Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему “Новые отрасли бактериологии: генетическая инженерия, биотехнология

В этой работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности,открываемые генетической инженерией перед человечеством как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет
“Новые отрасли бактериологии: генетическая инженерия, биотехнология В этой работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности,открываемые БиотехнологияБиотехнология - это производственное использование Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов;биотехнология препаратов для С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и Перспективы развития биотехнологии: Центральная проблема биотехнологии - интенсификация биопроцессов как Ферменты генетической инженерии Генетическая инженерия - потомок молекулярной Достижения генетической инженерии С помощью генетической В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной,
Слайды презентации

Слайд 2 В этой работе я раскрываю тему достижений генной

В этой работе я раскрываю тему достижений генной инженерии и биотехнологии.

инженерии и биотехнологии. Возможности,открываемые генетической инженерией перед человечеством как

в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.Таким образом, генная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая. Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии может привести к коренным преобразованиям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению. Под влиянием биотехнологии медицина может превратиться в дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.

Слайд 3 Биотехнология
Биотехнология

БиотехнологияБиотехнология - это производственное использование биологических агентов

- это производственное использование биологических агентов или их систем

для получения ценных продуктов и осуществления целевых превращений.

Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании.

Слайд 4 Условно можно выделить следующие основные направления биотехнологии:

биотехнология

Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов;биотехнология препаратов

пищевых продуктов;

биотехнология препаратов для сельского хозяйства;

биотехнология препаратов и продуктов

для промышленного и бытового использования;

биотехнология лекарственных препаратов;

биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Слайд 5 С помощью биотехнологии получено множество продуктов для здравоохранения,

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной

сельского хозяйства, продовольственной и химической промышленности:

Причем важно то,

что многие из них не могли быть получены без применения биотехнологических способов.
Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.
В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.
Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.
Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.
Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др.
В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных.
В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.
Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Слайд 6 Перспективы развития биотехнологии:
Центральная проблема биотехнологии

Перспективы развития биотехнологии: Центральная проблема биотехнологии - интенсификация биопроцессов как

- интенсификация биопроцессов как за счет повышения потенциала биологических

агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.
В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК.
Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.
В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.
В качестве источников сырья для биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений. Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей в формировании продовольственной базы человечества растениеводства и животноводства с одной стороны, и микробного синтеза - с другой.

Слайд 7

Генетическая инженерияОдним из разделов

Генетическая инженерия

Одним из

разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.
Генная инженерия – это сумма методов, позволяющих переносить гены из одного организма в другой, или – это технология направленного конструирования новых биологических объектов.
Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.
На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.
Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.
Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.
Технология рекомбинантных ДНК использует следующие методы:
специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;конструирование рекомбинантной ДНК; гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;
клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;введение рекомбинантной ДНК в клетки или организмы.

Слайд 8 Ферменты генетической инженерии

Генетическая

Ферменты генетической инженерии Генетическая инженерия - потомок молекулярной генетики,

инженерия - потомок молекулярной генетики, но своим рождением обязана

успехам генетической энзимологии и химии нуклеиновых кислот, так как инструментами молекулярного манипулирования являются ферменты.
Если с клетками и клеточными органеллами мы подчас можем работать микроманипуляторами, то никакие, даже самые мелкие микрохирургические инструменты не помогут при работе с макромолекулами ДНК и РНК.
Только ферменты могут найти определенные последовательности нуклеотидов, «разрезать» там молекулу или, наоборот, «заштопать» дырку в цепи ДНК.
Эти ферменты издавна находятся в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки.
Задача генного инженера - подобрать фермент, который бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.

Слайд 9 Достижения генетической

Достижения генетической инженерии С помощью генетической инженерии созданы

инженерии

С помощью генетической инженерии созданы линии животных, устойчивых

к вирусным заболеваниям, а также породы животных с полезными для человека признаками.
Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.
Генная инженерия открыла путь для производства продуктов белковой природы путем введения в клетки микроорганизмов, искусственно синтезированных генов, где они могут экспрессироваться (встраиваться) в состав гибридных молекул.
Первой удачной попыткой такого рода стала работа К. Итакуры и Г. Бойера с соавторами (1977г.) по экспрессии в Е. coil химически синтезированного гена, кодирующего гормон млекопитающих - соматостатин.
Ген соматостатина был получен на основе сведений о первичном строении этого пептидного гормона, состоящего всего из 14 аминокислот. Использованный в этой работе подход оказался весьма перспективным для получения и многих других пептидных гормонов.
В различных лабораториях в СССР и за рубежом были созданы штаммы Е. coli, синтезирующие в составе гибридных белков гормон роста человека (соматотропин), пептидные гормоны — брадикинин и ангиотензин, нейропептид лей-энкефалин и др.
Ген гормона роста человека длиной 584 п.н.— наиболее длинный из искусственно синтезированных в настоящее время. Он был встроен в плазмиду, реплицирующуюся в Е. coli под контролем промотора триптофанового оперона.
Трансформированные полученной химерной плазмидой клетки Е. coli продуцировали при индукции промотора около 3 млн. молекул гормона роста человека в расчете на клетку. Этот полипептид, как было установлено в экспериментах на крысах с удаленным гипофизом, по функциям оказался полностью идентичен гормону роста человека.
В 1976г. Гилберт и Максам в Гарвардском университете, а также Сэнгер разработали быстрый метод химического анализа ДНК. Появилась реальная возможность определять последовательность до 1000 нуклеотидов в неделю силами одного исследователя.
В 1982-1985гг. стало возможно создать прибор для автоматического анализа нуклеиновых кислот (а значит и генов).
Еще один важнейший этап - это синтез биополимеров по установленной структуре. Первые коммерческие приборы, производящие автоматизированный синтез полипептидов, были разработаны на основе исследований Меррифилда в 1963г. Они используются в исследовательских лабораториях и в фармацевтической промышленности.
Метод химического синтеза генов обеспечил также возможность получения штаммов бактерий продуцентов инсулина человека, важного лечебного препарата для больных диабетом.

  • Имя файла: “novye-otrasli-bakteriologii-geneticheskaya-inzheneriya-biotehnologiya.pptx
  • Количество просмотров: 79
  • Количество скачиваний: 0