
Зубы: анатомия и биохимия

К.Э. Герман

Зав. кафедрой естественных и медико-биологических наук МО МИ РЕАМИЗ

The Crown and Root

- Crown- portion above the gingivae covered with enamel
- Root- portion below covered with cementum
- They are joined at the cemento-enamel junction (CEJ)

Pulp Chamber and Canal

- Contain the *pulpal* tissue
 - Nervous, arteriolar and venous tissue
 - fibrous tissue

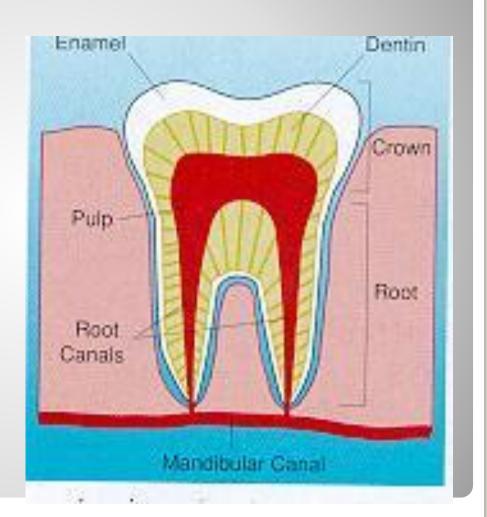
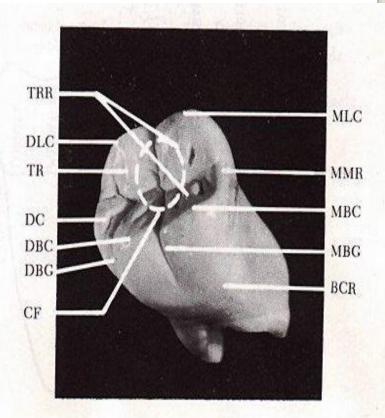
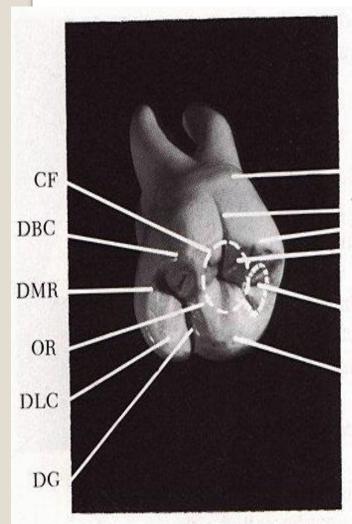




Figure 1–11. Mandibular right first molar. *MLC*, Mesio-lingual cusp; *MMR*, mesial marginal ridge; *MBC*, mesiobuccal cusp; *MBG*, mesiobuccal groove; *CF*, central fossa; *DBG*, distobuccal groove; *DBC*, distobuccal cusp; *DC*, distal cusp; *TR*, triangular ridge; *DLC*, distolingual cusp; *TRR*, transverse ridge; *BCR*, buccocervical ridge.

BCR BG MBC

SG

TF

MLC

Figure 1–8. Some landmarks on the maxillary first molar. BG, Buccal groove; MBC, mesiobuccal cusp; SG, supplemental groove; TF, triangular fossa; MLC, mesiolingual cusp; DG, developmental groove; DLC, distolingual cusp; OR, oblique ridge; DMR, distal marginal ridge; DBC, distobuccal cusp; CF, central fossa; BCR, buccocervical ridge.

Химический состав зубов зависит от их возраста

СТРОЕНИЕ ЗУБА

ОСНОВНЫЕ ТКАНИ ЗУБА

1. ПУЛЬПА (ЗАПОЛНЯЕТ ПОЛОСТЬ ЗУБА)

2. ДЕНТИН (ОСНОВНАЯ ТВЁРДАЯ ТКАНЬ ЗУБА)

3. ЭМАЛЬ

СОСТАВ ТВЁР ДЫХ ТКАНЕЙ ЗУБА

<u>ТКАНЬ</u>	МИНЕР. В-ВА	<u>ОРГАНИЧ.</u> В-ВА	ВОДА
ЭМАЛЬ	95-97%	1-1,5%	до 4%
дентин	до 72%	20%	10%
ЦЕМЕНТ	60%	27%	13%

ПУЛЬПА ЗУБА

ОБЩАЯ ХАРАКТЕРИСТИКА ПУЛЬПЫ:

ТИПИЧНАЯ РЫХЛАЯ СОЕДИНИТЕЛЬНАЯ
ТКАНЬ, ЗАПОЛНЯЮЩАЯ ПОЛОСТЬ ЗУБА

ФУНКЦИИ ПУЛЬПЫ

(ПЛАСТИЧЕСКАЯ

ТРОФИЧЕСКАЯ

ЗАЩИТНАЯ

СОСТАВ ПУЛЬПЫ

1. КЛЕТКИ

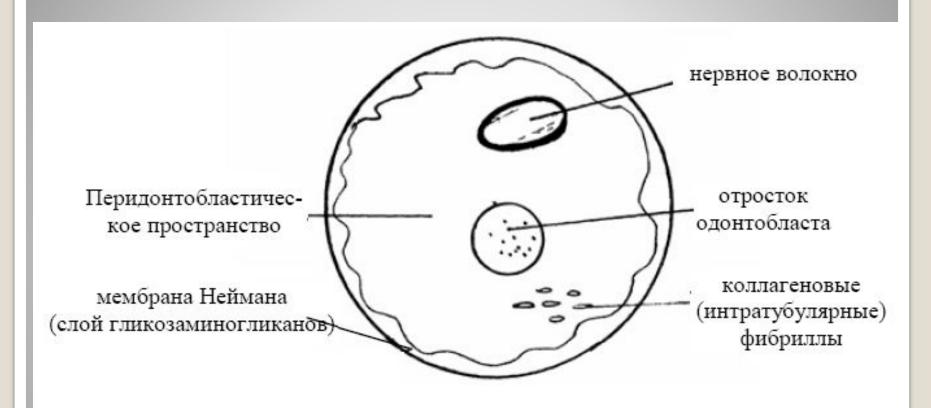
ОДОНТОБЛАСТЫ ГИСТИОЦИТЫ НЕДИФФЕРЕНЦИРОВАНЫЕ КЛЕТКИ

2. ВОЛОКНИСТЫЕ СТРУКТУРЫ

ГЛАВНЫМ ОБРАЗОМ, КОЛЛАГЕНОВЫЕ

3. МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО ХИСЫ ГИАЛУРОНОВАЯ КИСЛОТА ПРОТЕОГЛИКАНОВЫЕ КОМПЛЕКСЫ

виды дентина


- 1. ПРЕДЕНТИН (НЕКАЛЬЦИНИ-РОВАННЫЙ ДЕНТИН ЗАЧАТКА ЗУБА)
- 2. ЗРЕЛЫЙ ДЕНТИН (МИНЕРАЛИЗОВАННЫЙ ДЕПТИП, ОБРАЗОВАВШИЙСЯ ДО ПРОРЕЗЫВАНИЯ ЗУБА)
- 3. ВТОРИЧНЫЙ ДЕНТИН

(ДЕНТИН, ФОРМИРУЮЩИЙСЯ ПОСЛЕ ПРОРЕЗЫВАНИЯ ЗУБА)

Дентин

Дентин

Дентин — обызвествленная ткань зуба, которая составляет его основную массу и определяет его форму. По строению дентин занимает среднее место между костной тканью и эмалью. Он содержит больше воды и органического матрикса по-сравнению с эмалью (в 6 и 10 раз соответственно). В области коронки его покрывает эмаль, в области корня — цемент. Он крепче кости и цемента, но в 4-5 раз мягче, чем эмаль. Зрелый дентин содержит 70 % неорганических веществ, 17 % - органических и 13 % - воды.

. Схема дентинной трубочки

Схема дентинной трубочки

Органическая часть дентина на 95 % состоит из коллагеновых белков (коллаген I типа) и 5 % неколлагеновых белков, к которым относят фосфопротеин, сиалопротеин и специфический белок дентина — фосфофин, а также протеогликаны.

Дентин состоит из обызвестленного межклеточного вещества, пронизанного дентинными канальцами. Их количество колеблется в среднем от 30 до 75 тыс. на 1 мм² дентина. В просвете дентинных канальцев размещены дентинные отростки одонтобластов периферического слоя пульпы. Часть этих отростков пересекает дентинно-эмалевые соединения и в эмали образовывает эмалевые веретена. Предполагают, что их образование в ходе развития зуба происходит тогда, когда отростки некоторых одонтобластов замуровываются в эмали.

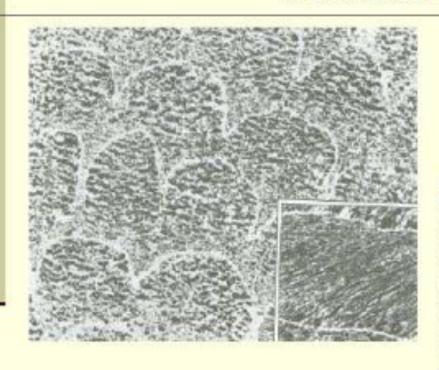
Дентин

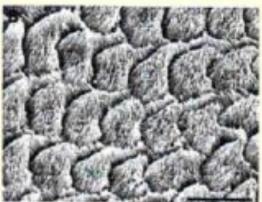
Дентинная жидкость представляет собой транссудат периферических капилляров пульпы и по белковому составу сходная с плазмой. В ней содержатся гликопротеины и фибронектин. Эта жидкость заполняет периодонтобластное пространство (между отростком одонтобласта и стенкой дентинной трубочки) (рис. 6.5.1). Периодонтобластное пространство служит важным путем поступления различных веществ из пульпы к дентинно-эмалевой границе. С внутренней стороны стенка дентинной трубочки покрыта тонкой пленкой органического вещества пограничной пластинкой (мембраной Неймана), которая проходит через всю длину трубочек и содержит высокую концентрацию гликозаминогликанов.

Гликопротейны — это <u>сложные белки</u>, в которых белковая (пептидная) часть <u>молекулы ковалентно</u> соединена с одной или несколькими группами <u>гетероолигосахаридов</u> Фибронектин (англ. Fibronectin) — <u>гликопротеин</u> внеклеточного матрикса

ЭМАЛЬ

- ■Самая минерали зованная из твёрдых тканей организма.
- ■Без клеток, без сосудов и нервов


МИНЕР АЛЬНЫЙ СОСТАВ ЭМАЛИ


- ОСНОВНЫЕ МИНЕРАЛЫ:
- КАЛЬЦИЙ 36%
- ФОСФОР 17%
- МАГНИЙ 0,45%
- НАТРИЙ- 0,5%
- ФТОР 0,1%

■ АПАТИТЫ:

- ГИДРОКСИАПАТИТ 75%
- КАРБОНАТАПАТИТ 17%
- ХЛОРАПАТИТ 4,4%
- ФТОРАПАТИТ 0,66%
- НЕАПАТИТНЫЕ ФОРМЫ - 2%

МИКРОФОТОГРАФИЯ ШЛИФА ЭМАЛИ

Чешуйчатое строение

СРАВНИТЕЛЬ НЫЙ СОСТАВ ЭМАЛИ ЗАЧАТКА И ЗРЕЛОГО ЗУБА

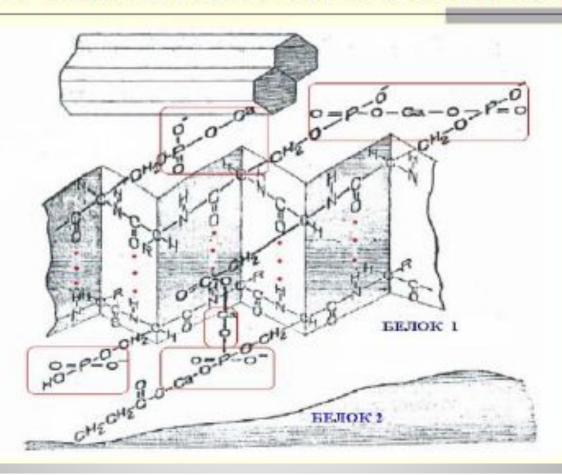
	КАЛЬЦИЙ КРИСТ.	ФОСФАТ НЕОРГ.	КАРБОНАТЫ	БЕЛОК
ЭМАЛЬ ЗАЧАТКА	0	СЛЕДЫ	СЛЕДЫ	20%
ЭМАЛЬ ЗРЕЛОГО ЗУБА	36%	18%	3-4%	0,3-1

Органический матрикс эмали

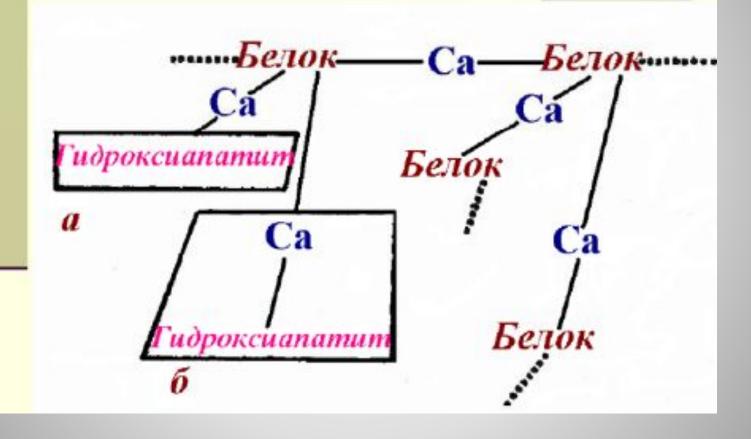
Органический матрикс эмали

Органический матрикс эмали составляет в среднем 1,2 %. Он тесно связан с кристаллами минеральных солей и в ходе образования эмали обеспечивает процессы их роста и ориентации. По мере созревания органический матрикс сохраняется в виде тончайшей трехмерной белковой сетки, нити которой размещаются между кристаллами.

Эмаль является секреторным продуктом эпителия и относится к тканям эктодермального происхождения. Она существенно отличается от других минерализованных тканей (костная, дентин, цемент), которые относятся к тканям мезенхимального происхождения. Органический матрикс уникален и отличается от других минерализованных тканей, основным компонентом органической части которых является коллаген.

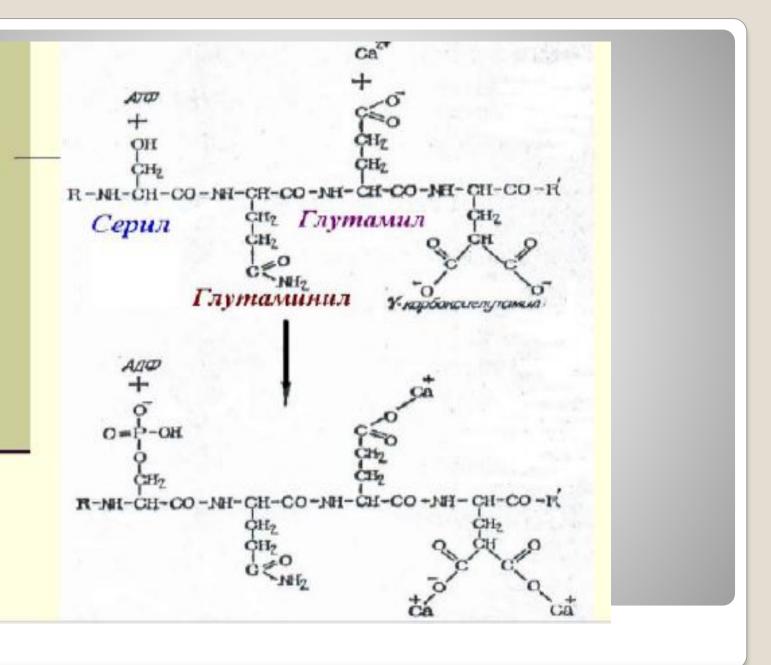

Согласно современным представлениям, органический матрикс эмали представлен следующими белками: тафтелином, энамелином, амелогенином.

БЕЛКИ ЭМАЛИ ЗАЧАТКА ЗУБА

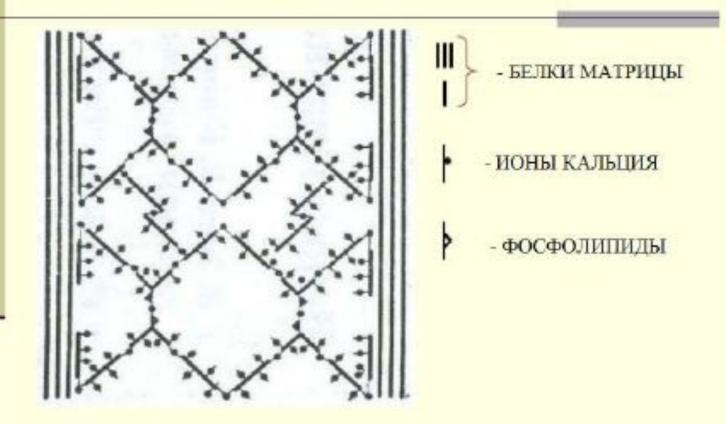

- ■АМЕЛОГЕНИНЫ
- ■ЭНАМЕЛИНЫ
- ■ФОСФОПРОТЕИН Е₃
- ■ФОСФОПРОТЕИН Е₄
- ■КАЛЬЦИЙ-СВЯЗЫВАЮЩИЕ БЕЛКИ

К.Э. Герман

РОЛЬ БЕЛКОВОЙ МАТРИЦЫ В ОБРАЗОВАНИИ КРИСТАЛЛОВ



СВЯЗЬ БЕЛКА И МИНЕРАЛЬНОЙ ФАЗЫ



ТОЧКИ КРИСТАЛЛИЗАЦИИ В БЕЛКАХ ЭМАЛИ

ПОКАЗАНЫ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ АМИНОКИСЛОТНЫХ ОСТАТКОВ, НА КОТОРЫХ НАЧИНАЕТСЯ МИНЕРАЛИЗАЦИЯ

МОДЕЛЬ СТРОЕНИЯ ЭМАЛИ

УГЛЕВОДЫ ПИЩИ В ПОЛОСТИ РТА

ЛЕВАНА > ДЕКСТРАНА

Влияние поступления фтора

Влияние малых доз фтора на организм человека (Поворознюк В.В., 2003):

- Стимулирование остеобластов, усиление образования остеоида и новой костной ткани, особенно в кортикальном слое кости.
- 2. Стимулирование одонтобластов к отложению вторичного дентина.
 - 3. Образование кристаллов фторапатита.

Действие на эмаль зуба высоких доз фтора способствует образованию фторида кальция согласно уравнению:

$$Ca_{10}(PO_4)_6(OH)_2 + 2F^- \longrightarrow 10 CaF_2 + 6PO_4^{3-} + 2(OH)^-$$

Влияние поступления фтора

Влияние высоких доз фтора на организм человека (Поворознюк В.В., 2003):

- 1. Образование иррегуляторного матрикса за счет ингибирования некоторых ферментов, беспорядочное расположение коллагеновых волокон матрикса.
- 2. Ослабление и нарушение минерализации при образовании иррегуляторного матрикса.
- Стимулирование остеобластов, усиленное новообразование остеоида. Образованная новая кость несовершенна, плохо минерализована.
- 4. Увеличение темпов перестройки, активация остеокластов, костной резорбции.

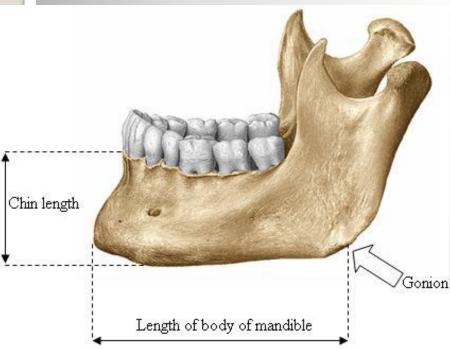
ЦЕМЕНТ

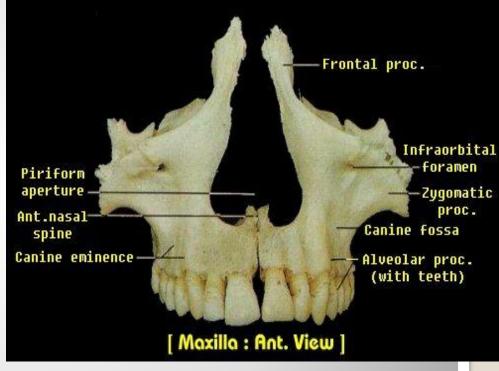
Цемент – обызвествленная ткань зуба, похожа на костную, но в отличие от нее, лишена сосудов и не подлежит постоянной перестройке. Цемент покрывает корни и шейку зубов. Толщина слоя цемента минимальна в области шейки (20-50 мкм) и максимальна на верхушке корня (100-1500 мкм).

Функции цемента:

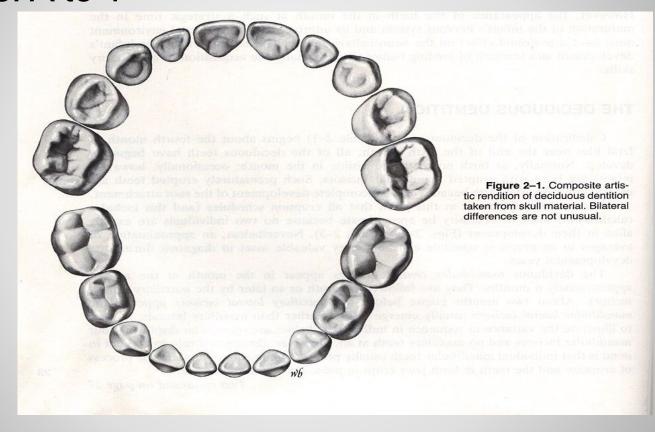
- Входит в состав поддерживающего аппарата зуба и обеспечивает прикрепление волокон периодонта к зубу.
- 2. Защищает дентин корня от повреждающих влияний.
- Выполняет репаративные функции во время образования так называемых резорбционных лакун и при переломе корня.
- Обеспечивает сохранение общей длины зуба, компенсируя стирание эмали вследствие ее изнашивания, откладываясь в области верхушки корня (пассивное прорезывание).

Периодонт (лат. Periodontium) - комплекс тканей, находящихся в щелевидном пространстве между цементом корня зуба и пластинкой альвеолы. Его средняя ширина составляет 0,20-0,25 мм. Наиболее узкий участок периодонта находится в средней части корня зуба, а в апикальном и маргинальном отделах его ширина несколько больше.

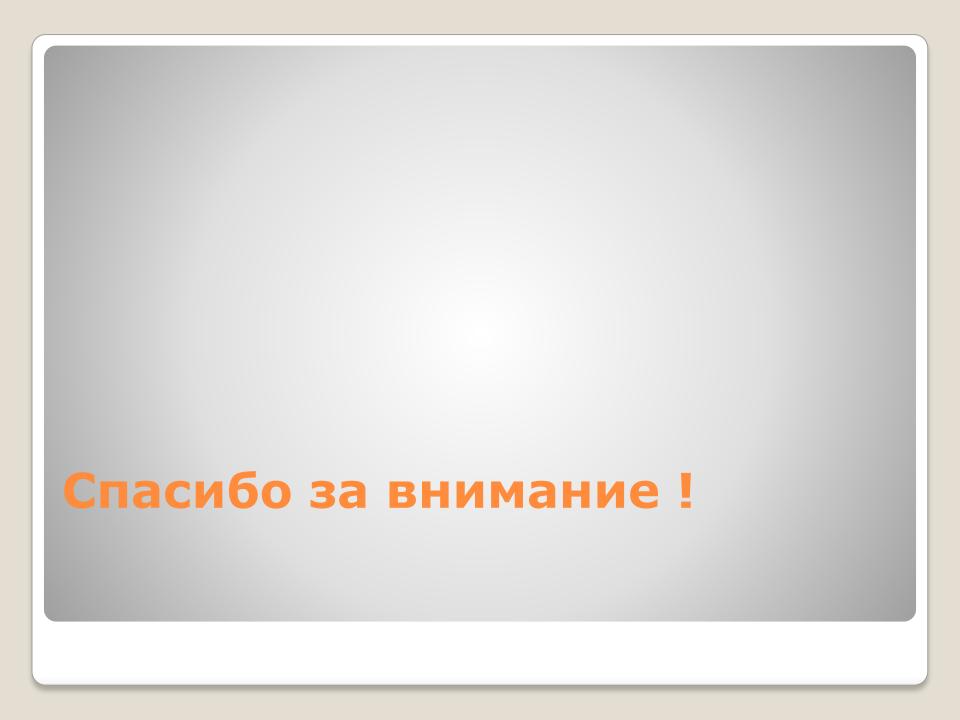

Основу периодонта составляет соединительная ткань. Ее главной структурой являются коллагеновые волокна. Они составляют основу периодонтальной связки и соединяют цемент зуба с костной тканью альвеолы. Несмотря на отсутствие эластичности, волокна коллагена обеспечивают некоторую подвижность зуба в лунке, в основном за счет незначительной извитости их хода


Коллаге́н — фибриллярный белок, составляющий основу соединительной ткани организма и обеспечивающий её прочность и эластичность.

Периодонт


Nomenclature

- Maxilla
- Mandible



 In clinical practice they are designated by letters: A to T

Deciduous Teeth

