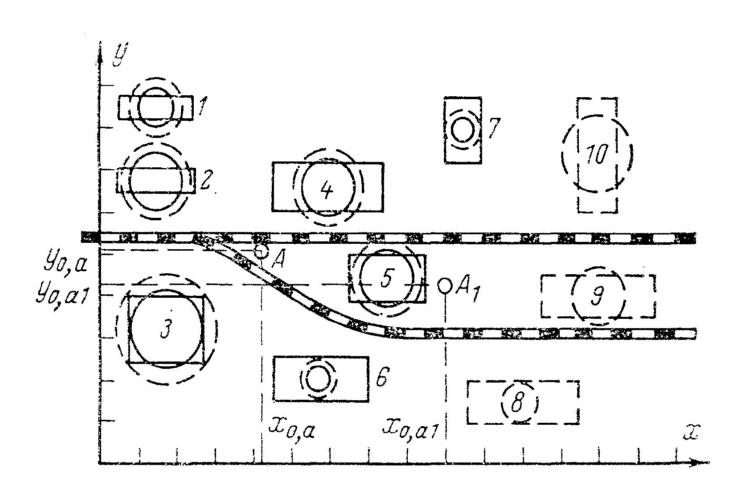
Занятие З Выбор места расположения подстанций промышленного предприятия

План занятия

- 1.Общие положения. Построение картограммы электрических нагрузок.
- 2.Определение условного центра электрических нагрузок и зоны рассеяния.
- 3. Выбор места расположения распределительных пунктов и трансформаторных подстанций.

1.Общие положения. Построение картограммы электрических нагрузок.


Выбор типа и места расположения подстанций осуществляется следующим образом:

- на генеральный план предприятия наносятся нагрузки отдельных подразделений с разделением по напряжению, роду тока и очередности ввода в эксплуатацию;
- выявляют сосредоточенные нагрузки и находят центры групп распределительных нагрузок;
- предварительно намечают места расположения подстанций и производят распределение нагрузок между ними;
- намечают типы подстанций и определяют ориентировочные их габариты

Картограмма нагрузок предприятия представляет собой размещенные на генеральном плане окружности, площади которых в принятом масштабе равны расчетным нагрузкам цехов.

Каждому цеху или участку соответствует окружность, центр которой совпадает с центром нагрузки цеха.

Генеральный план промышленного предприятия с картограммой и центром электрических нагрузок.

Картограмма нагрузок предприятия состоит из окружностей π r2 в выбранном масштабе m и равна расчетной нагрузке соответствующего цеха

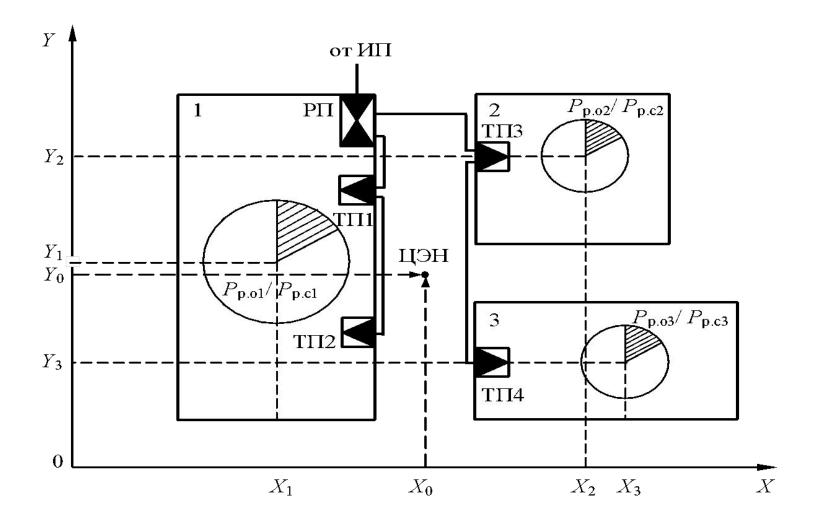
$$P_i = \pi \cdot r_i^2 \cdot m$$

радиус нагрузки

$$r_i = \sqrt{\frac{P_i}{\pi \cdot m}}$$

где т – масштаб для определения площади круга

Каждый круг может быть разбит на секторы, соответствующие осветительной и силовой нагрузкам


Угол сектора осветительной нагрузки в градусах определяется по выражению

$$\alpha_{oi} = \frac{P_{poi} \cdot 360}{P_{pi}}$$

силовой нагрузки

$$\alpha_{ci} = 360 - \alpha_{oi}$$

Доля осветительной и силовой нагрузок указываются на картограмме

2.Определение условного центра электрических нагрузок и зоны рассеяния

Если считать, что нагрузки цеха равномерно распределенными по его площади, то центр нагрузок можно принять совпадающим с центром тяжести фигуры, изображающей цех на плане.

координаты центра электрических нагрузок определяют по формулам:

$$X_{0} = \frac{\sum_{i=1}^{n} P_{i} \cdot x_{i}}{\sum_{i=1}^{n} P_{i}} \quad Y_{0} = \frac{\sum_{i=1}^{n} P_{i} \cdot y_{i}}{\sum_{i=1}^{n} P_{i}}$$

Второй метод является разновидностью первого, но учитывает не только электрические нагрузки потребителей электроэнергии, но и продолжительность работы этих потребителей в течение расчетного периода времени.

$$X_0 = \frac{\sum\limits_{i=1}^n P_i \cdot x_i \cdot T_i}{\sum\limits_{i=1}^n P_i \cdot T_i} Y_0 = \frac{\sum\limits_{i=1}^n P_i \cdot y_i \cdot T_i}{\sum\limits_{i=1}^n P_i \cdot T_i}$$

Третий метод, согласно которому рациональное размещение ГПП, ГРП или ТП соответствовать должно минимуму приведенных ГОДОВЫХ затрат, предусматривает определения ДЛЯ электрических нагрузок решение системы алгебраических уравнений методом простой итерации.

Порядок расчета координат центра в этом случае следующий:

1) проверка возможного совпадения центра нагрузок с местоположение одного из цехов по уравнению

$$\left(\sum_{\substack{i=1\\k\neq 1}}^{n} \frac{\beta_{i}(x_{k}-x_{i})}{\sqrt{(x_{k}-x_{i})^{2}+(y_{k}-y_{i})^{2}}}\right)^{2} + \left(\sum_{\substack{i=1\\k\neq i}}^{n} \frac{\beta_{i}(y_{k}-y_{i})}{\sqrt{(x_{k}-x_{i})^{2}+(y_{k}-y_{i})^{2}}}\right)^{2} \leq \beta_{k},$$

где 3, — приведенные годовые затраты на единицу длины линии (3i = пост.); хi, ,уi — координаты i-го цеха; хк, ук — координаты ЦЭН цехов по уравнению

• 2) определение положения новой системы координат, при которой итерационный процесс будет заведомо сходящимся, по уравнениям

$$x'_{0} = \frac{\sum_{i=1}^{n} \beta_{i} x_{i}}{\sum_{i=1}^{n} \beta_{i}}; \quad y'_{0} = \frac{\sum_{i=1}^{n} \beta_{i} y_{i}}{\sum_{i=1}^{n} \beta_{i}};$$

$$\sum_{i=1}^{n} \beta_{i} \frac{\beta_{i} (x_{i} - x'_{0}) (y_{i} - y'_{0})}{(\sqrt{(x_{i} - x'_{0})^{2} + (y_{i} - y'_{0})^{2}})^{3}};$$

$$\sum_{i=1}^{n} \frac{\beta_{i} ((x_{i} - x'_{0})^{2} - (y_{i} - y'_{0})^{2})}{(\sqrt{(x_{i} - x'_{0})^{2} + (y_{i} - y'_{0})^{2}})^{3}};$$

где х, у — начало новои системы координат, р — угол между осями абсцисс (положительное направление) новой и старой систем координат

3) определение искомых координат путем решения следующей системы уравнений методом простой итерации

$$x_{0} = \frac{\sum_{i=1}^{n} \frac{3_{i}x_{i}}{V(x-x_{i})^{2}+(y-y_{i})^{2}}}{\sum_{i=1}^{n} \frac{3_{i}}{V(x-x_{i})+(y-y_{i})^{2}}};$$

$$y_{0} = \frac{\sum_{i=1}^{n} \frac{3_{i}y_{i}}{V(x-x_{i})^{2}+(y-y_{i})^{2}}}{\sum_{i=1}^{n} \frac{3_{i}}{V(x-x_{i})^{2}+(y-y_{i})^{2}}}.$$

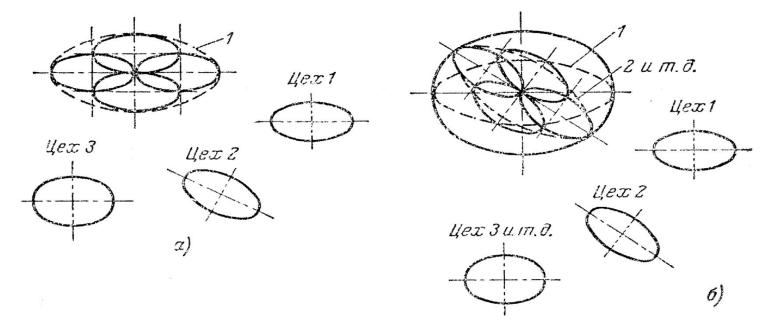
Распределение случайных координат ЦЭН

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{(x - a_x)^2}{2\sigma_x^2}}$$

$$f(y) = \frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{(y - a_y)^2}{2\sigma_y^2}}$$

где a_x, a_y — математические ожидания случанных координат; δ — дисперсия случайных координат, или

$$f(x) = \frac{h_x}{\sqrt{\pi}} e^{-h_x^2 x^2};$$


$$f(y) = \frac{h_y}{\sqrt{\pi}} e^{-h_y^2 y^2},$$

где h_x и h_v – меры точности случайных величин

Зона рассеяния центра электрических нагрузок промышленного предприятия представляет собой эллипс с радиусами.

$$R_x = \frac{\sqrt{3}}{h_x}, \quad R_y = \frac{\sqrt{3}}{h_y}.$$

При $h_x = h_y$ эллипс превращается в круг

Образование зоны рассеивания предприятия

а — составляющая зона рассеивания ЦЭН предприятия от влияния цеха 1; б — часть зоны рассеивания ЦЭН предприятия, созданная влиянием цехов 1 и 2.

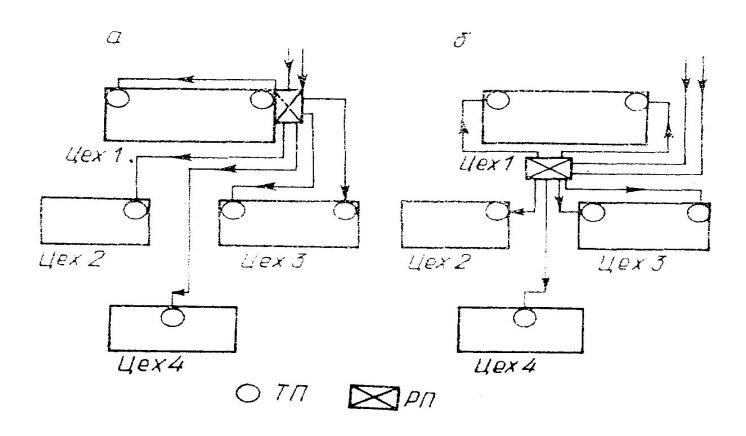
дальнейшее построение производится аналогично: 1 — эллипс рассеивания ЦЭНІ предприятия, от влияния цеха 1;

2 — то же от влияния цеха 2.

3. Выбор места расположения распределительных пунктов и трансформаторных подстанций

Причинами, вызывающими постоянное смещение ЦЭН:

- 1) изменениями потребляемой отдельным приемником, цехом, предприятием мощности
- 2) изменениями сменности промышленного предприятия;
- 3) развитием предприятия.


существуют два подхода к решению оптимизационных задач в промышленной энергетике: статический и динамический.

При статическом подходе не учитывается изменение электрических нагрузок

При динамическом подходе учитываются динамика систем электроснабжения на длительный период времени и изменения ее параметров

Особенности выбора местоположения РП

Оптимальное положение РП будет на границе балансовой ответственности, поскольку это приводит к обратным потокам энергии, вызывающим увеличение расхода проводникового материала и потерь электроэнергии

Рассчитать электрическую активную нагрузку цехов и определить ЦЭН предприятия

	1							
		•						
	-	_						
	2			3				
	2							
			4					
50м			•			5		
							-	
50n	А							

1	Инструментальный
2	Термический
3	Окрасочный
4	Механический
5	РМЦ

1 вариант

Расчетная нагрузка определяется по удельной плотности электрических нагрузок

Удельная плотность электрических нагрузок

Наименование цеха	Плотность электрических нагрузок, кВт/м ²	Кс
Инструментальный	0,12-0,14	0,2-0,25
Термический	0,18-0,24	0,8-0,9
Окрасочный	0,14-0,15	0,5-0,6
Механический	0,15-0,19	0,25-0,4
РМЦ	0,2-0,16	0,2-0,3

Определяем площадь цехов

Цех	Длина, м	Ширина, м	Площадь, м ²
Инструменталь ный	50	50	2500
Термический	50	25	1250
Окрасочный	75	50	3750
Механический	75	50	3750
РМЦ	50	50	2500

Определяем расчетную нагрузку цехов по формуле

и сводим в таблицу

$$P_{\rm p} = p_{\rm yg} \cdot S \cdot K_{\rm c}$$

Цех	Площадь, M^2	<i>Р</i> уд, кВт/м ²	Kc	Рр, кВт
Инструментальный	2500	0,13	0,22	71,5
Термический	1250	0,2	0,85	212,5
Окрасочный	3750	0,15	0,55	309,4
Механический	3750	0,17	0,3	191,25
РМЦ	2500	0,15	0,55	206,25

3. Определяем центры электрических нагрузок цехов

ЦЕХ	X	У
Инструментальный	2	9
Термический	1,5	6
Окрасочный	5	6,5
Механический	3,5	3
РМЦ	7	2

4. Определяем ЦЭН

$$x_0 = \frac{2 \cdot 71,5 + 1,5 \cdot 212,5 + 5 \cdot 309,4 + 3,5 \cdot 191,25 + 7 \cdot 206,25}{990,9} = 4,2$$

$$y_0 = \frac{9 \cdot 71,5 + 6 \cdot 212,5 + 6,5 \cdot 309,4 + 3 \cdot 191,25 + 2 \cdot 206,25}{990,9} = 5,0$$

2 вариант

При определении ЦЭН учтем режим работы цехов

Цех	Режим работы	Тр, ч
Инструментальный	односменный	2500
Термический	трехсменный	7200
Окрасочный	двухсменный	4500
Механический	двухсменный	4500
РМЦ	односменный	2500

Определяем центры электрических нагрузок цехов

$$x_0 = \frac{2 \cdot 71,5 \cdot 2500 + 1,5 \cdot 212,5 \cdot 7200 + 5 \cdot 309,4 \cdot 4500 + 3,5 \cdot 191,25 \cdot 4500 + 7 \cdot 206,25 \cdot 2500}{4477300} = 3,6;$$

$$y_0 = \frac{9 \cdot 71,5 \cdot 2500 + 6 \cdot 212,5 \cdot 7200 + 6,5 \cdot 309,4 \cdot 4500 + 3 \cdot 191,25 \cdot 4500 + 2 \cdot 206,25 \cdot 2500}{4477300} = 5,2.$$