
White-box testing

Agenda
� Introduction
� Code Basics

� Variables
� Types
� Conditionals
� Loops
� Functions

� Flowcharts
� White-box testing

� Cyclomatic Complexity
� Test Design Techniques
� Practice

� Data Flow testing
� Conclusion
� References
� Questions

Introduction

This training will be useful for those who:

� Haven’t passed ISTQB (foundation level)

� Want to have more arguments in discussions with
developers

� Want to know how to write code

� Want to go deep in white-box testing

Code Basics

Variables

� Variable is a storage location and an associated symbolic
name (an identifier) which contains some known or
unknown quantity or information, a value.

int a;

string b, c;

a = 234;

b = “Andy”;

c = a + b;

Types

� Basic types: integer, float, string, char, boolean.

int v = 30;

float v = 12.56;

string v = “I love NY”;

char v = ‘H’;

boolean = yes/no, true/false, 1/0

Conditionals

� Conditionals are features of a programming language
which perform different computations or actions
depending on whether a programmer-specified boolean
condition evaluates to true or false.

if (condition) then

(action)

 else

(action)

Conditionals. Types

if (condition) then
--statements
elseif (condition) then
--more statements
elseif (condition) then
--more statements;
 ...
else
--other statements;
end if;

switch (someChar)
{
 case 'a': actionA; break;
 case 'x': actionX; break;
 case 'y':------
 case 'z': actionZ; break;
 default: actionNoMatch;
}

 (condition) ? actionOnTrue : actionOnFalse

if (condition) then
 (consequent)
else
 (alternative)
end if

Conditionals. Examples

 name1 = Peter;
 age1 = 40;
 name2 = John;
 age2 = 28;
 if (age1 < 40) then
 result = “Choose first”
 elseif (age2 < 28 or name2 == ”John”) then
 result = “Choose second”
 end if;

 age = 27;
 switch (age) {
 case 18: result = “Young”; break;
 case 30: result = “Ok”; break;
 case 60: result = “Old”; break;
 default: result = “Unknown”;
 }

 a = 400;
 b = 30;
 if (b < a) then
 result = “Happy”
 else
 result = 0;
 end if

a = 45; b = −20; c = false;
(a > 0 && b > 0) || (c) ? result = “Positive” : result = “Negative”

result = “Happy”

result = “Choose second”

result = “Unknown”

result=“Negative”

Loops

� Loop is a sequence of instructions that is continually
repeated until a certain condition is reached.

while (condition)
{
 statements;
}

Loops. Types

do
 {
 do_work();
 }
while (condition);

while (condition)
 {
 do_work();
 }

 for (initialization; condition; increment/decrement)
 {
 do_work();
 }

 for each item in collection:
 do something to item

Loops. Examples

int counter = 3;
int factorial = 1;

while (counter > 1)
 {
 factorial *= counter--;
 }

int counter = 4;
int factorial = 1;
do
 {
 factorial *= --counter;
 }
while (counter > 1);

int sum = 30;
for (int i = 1; i < 4; i++)
 {
 sum += i;
 }

int myint[] = {1, 2, 3, 4, 5};
for (int &i: myint)
 {

i++;
 }

while (true) {
 printf (“Loop\n");
 }

factorial = 6two times factorial = 6

three times

sum = 36

infinite loop

myint= {2, 3, 4, 5, 6}

Functions

� Function is a sequence of program instructions that
perform a specific task, packaged as a unit. This unit can
then be used in programs wherever that particular task
should be performed. Subprograms may be defined
within programs, or separately in libraries that can be
used by multiple programs.

� In different programming languages a function may be
called a procedure, a subroutine , a routine, a method, or
a subprogram.

Functions. Example
void function1(void)
{
 printf("Hello");
}

int function2(void)
{
 return 5;
}

char function3(int number)
{
 char selection[] = {'S','M','T','W','T','F','S'};
 return selection[number];
}

void main
{
 function1();
 a = 30 + function2();
 c = function3(3);
}

Flowcharts

Description

� A flowchart is a type of diagram that represents an
algorithm or process, showing the steps as boxes of
various kinds, and their order by connecting them with
arrows. This diagrammatic representation illustrates a
solution to a given problem.

Basic Symbols

� Start and end symbols. Represented as circles, ovals or rounded
rectangles, usually containing the word "Start" or "End", or another
phrase signaling the start or end of a process.

Basic Symbols

� Arrows. Showing "flow of control". An arrow coming from
one symbol and ending at another symbol represents
that control passes to the symbol the arrow points to. The
line for the arrow can be solid or dashed.

Basic Symbols

� Generic processing steps represented as rectangles.

Basic Symbols

� Input/Output – represented as a parallelogram.

Basic Symbols

� Conditional or decision represented as a diamond
(rhombus) showing where a decision is necessary, commonly
a Yes/No question or True/False test.

read x;
read y;
if (x > y)
 x = x + 1;
else
 y = y + 1;
 while (x > y)
{
 y = x * y;
 x = x + 1;
}

 Practice 1. Flowcharts

start

x, y

x > y

x = x + 1

x > y

y = x * y;
x = x + 1;

y = y + 1

end

Ye
s

No

No Ye
s

read A, B, C;
while (A > B) do
{
 if(A - B) > 100 then
 A = A - 10;
 B = B + 10
 else
 A--;
 B++;
 switch (C):
 case “Orange”: D = “Green”;
 case “Yellow”: D = “Red”;
 default: D = “Magenta”
}
write A, B, C, D;

end

write A,B,C,D

start

read A,B,C

A > B

(A-B)>100

A = A – 10
B = B + 10

A
--
B
+
+ C

D = Green D = Red D = Magenta

No Ye
s

Ye
s

No

Orange Yellow default

 Practice 2. Flowcharts

White-box testing

Description

� White-box testing is testing that takes into account
the internal mechanism of a system or component.

� White-box testing is also known as structural testing,
clear box testing, and glass box testing.

� “Clear box” and “glass box” indicate that you have
full visibility of the internal workings of the software
product, specifically, the logic and the structure of
the code.

White-box Testing Levels

� Unit testing – testing of individual hardware or software units
or groups of related units. A unit is a software component
that cannot be subdivided into other components.

� Integration testing – software components, hardware
components, or both are combined and tested to
evaluate the interaction between them.

� System testing – performed to analyze the behavior of the
whole system according to the requirement specification.
Business processes, system behavior, and system resources
may also be taken into consideration. System testing is
considered as the final test carried on the software from
the development team.

Integration Testing Vs. System Testing

� Integration testing aims to check if the different sub
functionalities or modules were integrated properly to form
a bigger functionality. Focus of attention is on the modules.
Interface specifications are taken into consideration.

� In system testing the system is tested as a whole, where the
functionalities that make up the system are not taken into
consideration. The focus of attention is on system
functionality. Requirements specifications are important.

� Integration tests are carried out before the system moves
to the system testing level.

Integration Testing Approaches
� Big Bang - all or most of the developed modules are

coupled together to form a complete software system or
major part of the system and then used for integration
testing.

� Bottom Up Testing is an approach where the lowest level
components are tested first, then higher level components.
The process is repeated until the component at the top of
the hierarchy is tested.

� Top Down Testing is an approach where the top integrated
modules are tested and the branch of the module is tested
step by step until the end of the related module.

� Sandwich Testing is an approach to combine top down
testing with bottom up testing.

Stubs and Drivers
� A driver (оболочка) is a software module used to invoke a

module under test and, often, provide test inputs, control and
monitor execution, and report test results or most simplistically
a line of code that calls a method and passes that method a
value.

� A stub (заглушка) is a computer program statement
substituting for the body of a software module that is or will be
defined elsewhere or a dummy component or object used to
simulate the behavior of a real component until that
component has been developed.

� Stubs and drivers are often viewed as throwaway code.
However, they do not have to be thrown away:
� Stubs can be “filled in” to form the actual method.
� Drivers can become automated test cases.

Stubs and Drivers. Example

Module C

Module A Module B

Not Developed

Driver for Module C

Stubs and Drivers. Example

Module C

Module A Module B

Not Developed Not Developed

Stub for Module BStub for Module A

Static Testing

Static testing is a type of testing which requires only the source
code of the product, not the binaries or executables. Static
testing does not involve executing the programs on
computers but involves people going through the code to
find out whether:

� The code works according to the functional requirements.

� The code has been written in accordance with code
conventions.

� The code for any functionality has been missed out.

� The code handles errors properly.

Static testing can be done by humans or with the help of
specialized tools.

Cyclomatic Complexity
� Cyclomatic complexity (or conditional complexity) is a software

metric. It was developed by Thomas J. McCabe, Sr. in 1976 and
is used to indicate the complexity of a program. It is a measure
of logical strength of the program. It directly measures the
number of linearly independent paths through a program's
source code.

� Cyclomatic complexity more than 50 means very high risks and
non-testable code.

� The complexity M is then defined as:

M = E − N + 2P,
where:

E = the number of edges of the graph
N = the number of nodes of the graph

P = the number of connected components

Cyclomatic Complexity. Example

E = 9 edges

N = 8 nodes

P = 1 connected component

M = 9 - 8 + (2*1) = 3

Cyclomatic Complexity. Example

E = 16 edges

N = 14 nodes

P = 1 connected component

M = 16 - 14 + (2*1) = 4

Cyclomatic Complexity. Lifehack
� For programs without goto statements, the value of the

cyclomatic complexity is one more than the number of
conditions in the program.

� A simple condition is logical expression without ‘AND’ or ‘OR’
connectors.

� If the program includes compound conditions, which are
logical expressions including ‘AND’ or ‘OR’ connectors, then
you count the number of simple conditions in the
compound conditions when calculating the cyclomatic
complexity.

� if (A < B)

� if ((A < B) && (C = false)) || (D > 506)

Test Design Techniques

White-box test design techniques

� Control flow testing:
� Statement testing
� Branch testing*
� Decision testing (Condition testing)*
� Path testing
� Multiple Conditions Testing

� Data flow testing
� Define/use testing
� “Program slices”

* - different meanings, but similar results

Control Flow Testing

� The starting point for control flow testing is a
program flow graph. This is a skeletal model of all
paths through the program.

� A flow graph consists of nodes representing
decisions and edges showing flow of control.

� Each branch in a conditional statement
(if-then-else or case) is shown as a separate path.

Statement Testing

� Statement testing – simply testing each statement. A
statement exists as a single node within a program graph,
and so if each node of the graph is traversed then so is
each statement. Of course, this has the obvious problem
that if a node has two edges, both of which will lead to
every remaining node being traversed, this metric could be
satisfied without every edge having been tested.

� Although it does not necessarily provide 100% coverage,
the test metric is still widely accepted.

� 100% statement coverage doesn’t guarantee 100%
branch/decision or path coverage.

start

x, y

x > y

x = x + 1

x > y

y = x * y;
x = x + 1;

end

Ye
s

No

No Ye
s

x = x + 1

Statement
Testing. Practice 1

end

write A,B,C,D

start

read A,B,C

A > B

(A-B)>100

A = A – 10
B = B + 10

A
--
B
+
+ C

D = Green D = Red D = Magenta

No Ye
s

Ye
s

No

Orange Yellow default

Statement
Testing. Practice 2

Branch/Decision Testing

� Decision – a program point at which the control flow
has two or more alternatives. A node with two or more
links to separate branches.

� Decision testing – test design technique in which test
cases are designed to execute decision outcomes

� Decision coverage – percentage of decision
outcomes that have been exercised by a test suite.

� 100% decision coverage implies both 100% branch
coverage and 100% statement coverage.

Branch/Decision Testing

� A branch – is the outcome of a decision.

� Branch testing – is a testing method, which aims to ensure
that each one of the possible branch from each decision
point is executed at least once and thereby ensuring that
all reachable code is executed.

� Branch coverage – percentage of branches that have
been exercised by a test suite. Simply measures which
decision outcomes have been tested.

� 100% branch coverage implies both 100% decision
coverage and 100% statement coverage.

start

x, y

x > y

x = x + 1

x > y

y = x * y;
x = x + 1;

y = y + 1

end

Ye
s

No

No Ye
s

Branch/Decision
Testing. Practice

end

write A,B,C,D

start

read A,B,C

A > B

(A-B)>100

A = A – 10
B = B + 10

A
--
B
+
+ C

D = Green D = Red D = Magenta

No Ye
s

Ye
s

No

Orange Yellow default

Branch/Decision
Testing. Practice

Path Testing
� Path testing is a method for designing test cases

intended to examine each possible linearly
independent path of execution at least once.

� A linearly independent path is a sequence of
commands without possible branch points.

� A branch point exists if a conditional permits
alternative execution paths depending on the
outcome of a logical test.

� By creting tests for 100% path coverage, 100%
statement and 100% branch/decision coverage can
be guaranteed.

Path Testing.
Practice

Minimum set of paths
� 1-2-3-4-5-10 (property owned by others, no money for rent)

� 1-2-3-4-6-10 (property owned by others, pay rent)

� 1-2-3-10 (property owned by the player)

� 1-2-7-10 (property available, don’t have enough money)

� 1-2-7-8-10 (property available, have money, don’t want to
buy it)

� 1-2-7-8-9-10 (property available, have money, and buy it)

We would want to write a test case to ensure that each of
these paths is tested at least once.

end

write A,B,C,D

start

read A,B,C

A > B

(A-B)>100

A = A – 10
B = B + 10

A
--
B
+
+ C

D = Green D = Red D = Magenta

No Ye
s

Ye
s

No

Orange Yellow default

Path Testing.
Practice

Multiple Conditions Testing
� Multiple conditions testing - a white-box test design technique in

which test cases are designed to execute combinations of single
condition outcomes (within one statement).

� In Multiple Conditions Coverage for each decision all the
combinations of conditions should be evaluated.

 if (A || B) then
 print C
The test set for Multiple Conditions Coverage will be:

� 2^n tests are needed, if there are n conditions.

A B Result
true true true
true false true
false true true
false false false

Multiple Condition Testing. Example

if ((A < B) && (C == 158)) || (C > 506)
 I II III

Complete coverage can never be achieved.

I II III A B C Result

true true true 1 2 158/600 true
true true false 1 2 158 true
true false false 1 2 3 false
false false false 2 1 4 false
false false true 3 1 736 true
false true true 2 1 158/600 true
false true false 4 2 158 false
true false true 1 5 638 true

Memorize

� 100% Path coverage will imply 100% Statement
coverage

� 100% Path coverage will imply 100% Branch/Decision
coverage

� 100% Branch/Decision coverage will imply 100%
Statement coverage

� Decision coverage includes branch coverage.

� These rules work only such way – they don’t work
backwards.

Fault Injection
Fault injection is a technique for improving the coverage of a test
by introducing faults to test code paths. This includes:

� Bebugging (or fault seeding) is a software engineering
technique to measure test coverage. Known bugs are
randomly added to a program source code and the
programmer is tasked to find them. The percentage of the
known bugs not found gives an indication of the real bugs that
remain.

� Mutation testing involves modifying a program's source code in
small ways. Each mutated version is called a mutant and tests
detect and reject mutants by causing the behavior of the
original version to differ from the mutant. This is called killing the
mutant. Test suites are measured by the percentage of mutants
that they kill.

Practice

How many test cases are necessary to cover all the possible
sequences of statements for the following program fragment?
Assume that the two conditions are independent of each
other:

 if (Condition 1) then
 statement 1
 else statement 2
 fi
 if (Condition 2)then
 statement 3
 fi

A. 3 Test Cases
B. 2 Test Cases
C. 4 Test Cases

D. Not achievable

Practice. Example 1

Given the following code, which is true:

if A > B then
 C = A – B
else
 C = A + B
endif
read D
if C = D then
 Print "Error"
endif

A. 1 test for statement coverage, 3 for branch coverage
B. 2 tests for statement coverage, 2 for branch coverage
C. 2 tests for statement coverage. 3 for branch coverage
D. 3 tests for statement coverage, 3 for branch coverage
E. 3 tests for statement coverage, 2 for branch coverage

Practice. Example 2

Given the following fragment of code, how many tests are required for
100% decision coverage? Please provide graph.

if width > length then
 biggest_dimension = width

if height > width then
 biggest_dimension = height

end_if
else
 biggest_dimension = length
 if height > length then
 biggest_dimension = height
 end_if
end_if

A. 3

B. 2

C. 1

D. 4

Practice. Example 3

BD = WA

end

Graph for Example 3
start

W > L

BD = WA

H > WH > L

BD = WABD = WA

YesNo

Yes YesNo No

For
statement/Path
testing ?

What is the smallest number of test cases required to provide 100% branch
coverage?

 if(x > y)
 x = x + 1;
 else
 y = y + 1;
 while(x > y)
{
 y = x * y;
 x = x + 1;
}

A. 1

B. 2

C. 3

D. 4

Practice. Example 4

Analyze the following highly simplified procedure:

Ask: "What type of ticket do you require, single or return?"
IF the customer wants ‘return’
Ask: "What rate, Standard or Cheap-day?”
IF the customer replies ‘Cheap-day’
Say: "That will be £11:20"
ELSE
Say: "That will be £19:50"
ENDIF
ELSE
Say: "That will be £9:75"
ENDIF

Now decide the minimum number of tests that are needed to ensure
that all the questions have been asked, all combinations have occurred
and all replies given.

A. 3
B. 4
C. 5
D. 6

Practice. Example 5

You have designed test cases to provide 100% statement and 100%
decision coverage for the following fragment of code:

if width > length then
 biggest_dimension = width
else
 biggest_dimension = length
end_if

The following has been added to the bottom of the code fragment above:

 print "Biggest dimension is " & biggest_dimension
 print "Width: " & width
 print "Length: " & length

How many more test cases are required?

A. One more test case will be required for 100 % decision coverage.
B. Two more test cases will be required for 100 % statement coverage, one of
which will be used to provide 100% decision coverage.
C. None, existing test cases can be used.
D. One more test case will be required for 100" statement coverage.

Practice. Example 6

The diagram represents the
following paths through the code.

A. vwy
B. vwz
C. vxy
D. vxz

What is the MINIMUM combination
of paths required to provide full
statement coverage?

Practice. Example 7

� I.100% statement coverage guarantees 100% branch
coverage.

� II.100% branch coverage guarantees 100% statement
coverage.

� III.100% branch coverage guarantees 100% decision
coverage.

� IV.100% decision coverage guarantees 100% branch
coverage.

� V.100% statement coverage guarantees 100% decision
coverage.

Which of the following statements are correct?

Practice. Example 8

If a program is tested and 100% branch coverage is achieved,
which of the following coverage criteria is then guaranteed to
be achieved?

� A. 100% Equivalence class coverage

� B. 100% Condition coverage and 100% Statement coverage

� C. 100% Statement coverage

� D. 100% Multiple condition coverage

Practice. Example 9

Which of the following statements is NOT correct?

� A. A minimal test set that achieves 100% decision coverage will
also achieve 100% branch coverage.

� B. A minimal test set that achieves 100% path coverage will also
achieve 100% statement coverage.

� C. A minimal test set that achieves 100% path coverage will
generally detect more faults than one that achieves 100%
statement coverage.

� D. A minimal test set that achieves 100% statement coverage will
generally detect more faults than one that achieves 100% path
coverage.

Practice. Example 10

Data Flow Testing

Data Flow Testing. Description

� Variables are defined and used at different points within
the program, the concept of Data Flow Testing allows the
tester to examine variables throughout the program

� Data flow testing focuses on the variables used within a
program.

� it is closely related to path testing, however the paths are
selected on variables.

Data Flow Testing. Description

Data Flow testing helps to find such errors:

� A variable that is defined but never used
(referenced).

� A variable that is used but never defined.

� A variable that is defined twice before it is used.

Data Flow Testing. Types

There are two major forms of data flow testing:

� Define/use testing

� “Program slices”

Staff Discount Program
� The owner of a shop has decided that her staff can have a 10

percent discount on all their purchases. If they spend more than
£15, then the total discount is increased by 50 pence. The price
of each item being purchased is input into the program. When
-1 is entered, the total price is displayed, as well as the
calculated discount and the final price to pay.

� For example, the values £5.50, £2.00 and £2.50 are input,
equalling £10.00. The total discount would equal £1.00 (10% of
£10.00), with the total price to pay equalling £9.00.

� A second example would have purchases of £10.50 and £5.00,
equaling £15.50. In this case, as the total value is over £15, the
discount would be £2.05 (10% of £15.50 is £1.55, plus 50p as the
original total is over £15), meaning that the total price to pay
would be £13.45.

Staff Discount Program
1 program Example()
2 var staffDiscount, totalPrice, finalPrice, discount, price
3 staffDiscount = 0.1
4 totalPrice = 0
5 input (price)
6 while (price != -1) do
7 totalPrice = totalPrice + price
8 input (price)
9 od
10 print ("Total price: " + totalPrice)
11 If (totalPrice > 15.00) then
12 discount = (staffDiscount * totalPrice) + 0.50
13 else
14 discount = staffDiscount * totalPrice
15 fi
16 print("Discount: " + discount)
17 finalPrice = totalPrice – discount
18 print("Final price: " + finalPrice)
19 endprogram

Graph for Staff Discount Program

Each node in the graph corresponds to a statement in the
program; however, lines 1 and 2 do not correspond to any
node. This is because these lines are not used in the actual
code of the program: they are used by the compiler
to indicate the start of the program and to assign space in
memory for the variables.

Definition/Use. Part 1
3 staffDiscount = 0.1
4 totalPrice = 0
5 input (price)
6 while (price != -1) do
7 totalPrice = totalPrice + price
8 input (price)
9 od

3

4

5

6

7

8

9

3 – definition of staffDiscount
4 – definition of totalPrice
5 – use of price
6 – use of price
7 – definition of totalPrice, use of
totalPrice, use of price
8 – use of price

Definition/Use. Part 2
10 print ("Total price: " + totalPrice)
11 if (totalPrice > 15.00) then
12 discount = (staffDiscount * totalPrice) + 0.50
13 else
14 discount = staffDiscount * totalPrice
15 fi
16 print("Discount: " + discount)
17 finalPrice = totalPrice – discount
18 print("Final price: " + finalPrice)

10

10 – use of totalPrice
11 – use of totalPrice
12 – definition of discount, use of staffDiscount, totalPrice
14 - definition of discount, use of staffDiscount, totalPrice
16 – use of discount
17 – definition of finalPrice, use of totalPrice, discount
18 – use of finalPrice

11

1214

16

17

18

Define/Use Testing

� “Define/Use” refers to the two main aspects of a variable:
it is either defined (a value is assigned to it) or used (the
value assigned to the variable is used elsewhere – maybe
when defining another variable).

� The program is called P

� Its graph as G(P). The program graph has single entry and
exit nodes, and there are no edges from a node to itself.

� The set of variables within the program is called V

Defining/Usage Nodes

� Within the context of define/use testing there are two types
of nodes.

� Defining nodes, referred to as DEF(v, n): Node n in the
program graph of P is a defining node of a variable v in the
set V if and only if at n, v is defined. For example, with
respect to a variable x, nodes containing statements such
as “input x” and “x = 2” would both be defining nodes.

� Usage nodes, referred to as USE(v, n): Node n in the
program graph of P is a usage node of a variable v in the
set V if and only if at n, v is used. For example, with respect
to a variable x, nodes containing statements such as “print
x” and “a = 2 + x” would both be usage nodes.

Usage nodes. Types
The two major types of usage nodes are:

� P-use: predicate use – the variable is used when making a
decision (e.g. if b > 6).

� C-use: computation use – the variable is used in a
computation (for example, b = 3 + d – with respect to the
variable d).
� O-use: output use – the value of the variable is output to the

external environment (for instance, the screen or a printer).
� L-use: location use – the value of the variable is used, for

instance, to determine which position of an array is used (e.g.
a[b]).

� I-use: iteration use – the value of the variable is used to
control the number of iterations made by a loop (for
example: for (int i = 0; i <= 10; i++)).

The defining and usage nodes for the
variable totalPrice

Path Types

� Definition-use (du) paths: A path in the set of all paths
in P(G) is a du-path for some variable v if and only if
there exist DEF(v, m) and USE(v, n) nodes such that m
is the first node of the path, and n is the last node.

� Definition-clear (dc) paths: A path in the set of all
paths in P(G) is a dc-path for some variable v if and
only if it is a du-path and the initial node of the path is
the only defining node of v in the path.

DU/DC Paths

� First figure shows an example of a du-path. However, this
path is not definition-clear, as there is a second defining
node within the path.

� Second graph shows definition-clear path.

DU/DC Paths for Staff Discount Program

Looking at the Staff Discount Program, for the price variable there
are two defining nodes and two usage nodes, as listed below:

� Defining nodes:
� DEF(price, 5)
� DEF(price, 8)

� Usage nodes:
� USE(price, 6)
� USE(price, 7)

Therefore, there are four du-paths:
� <5, 6>
� <5, 6, 7>
� <8, 9, 6>
� <8, 9, 6, 7>
All of these paths are definition-clear, so they are all dc-ps.

Coverage Metrics
� The set of paths satisfies All-Defs for P if within the set of v paths, every

defining node for each variable in the program has a definition-clear path
to a usage node for the same variable, within the set of paths chosen.

� The set of paths satisfies All-P-Uses for P if, within the set of paths, every
defining node for each variable in the program has a definition-clear path
to every P-use node for the same variable.

� The set of paths satisfies All P-Uses/Some C-Uses for P if, within the set of
paths, every defining node for each variable in the program has a
definition-clear path to every P-use node for the same variable: however, if
there are no reachable P-uses, the definition-clear path leads to at least
one C-use of the variable.

� The set of paths satisfies All C-Uses/Some P-Uses for P if, within the set of
paths, every defining node for each variable in the program has a
definition-clear path to every C-use node for the same variable: however, if
there are no reachable C-uses, the definition-clear path leads to at least
one P-use of the variable.

� The set of paths satisfies All-Uses for P if, within the set of paths, every
defining node for each variable in the program has a definition-clear path
to every usage node for the same variable.

� The set of paths satisfies All-DU-Paths for P if, the set of paths contains every
feasible DU-path for the program.

“Program Slices”

� A program slice with respect to a variable at a certain point in
the program, is the set of program statements from which the
value of the variable at that point of the program is
calculated.

� Program slices use the notation S(V, n), where S indicates that
it is a program slice, V is the set of variables of the slice and n
refers to the statement number (i.e. the node number with
respect to the program graph) of the slice.

� The program slice allows the programmer to focus specifically
on the code that is relevant to a particular variable at a
certain point.

Slice for Staff Discount Program

So, for example, with respect to the price variable in Staff
Discount Program, the following slices for each use of the
variable can be created:

� S(price, 5) = {5}

� S(price, 6) = {5, 6, 8, 9}

� S(price, 7) = {5, 6, 8, 9}

� S(price, 8) = {8}

 Conclusion

How Much Testing is Enough?

� Time

� Money

� People

� Requirements

� Knowledge

� Product

� Code

Pros and Cons

� White-box testing finds
defects which hardly can
be found within black-box
testing.

� You can be absolutely
sure, that your code is
amazing.

� Advanced knowledge of
source code.

� Developers carefully
implement any new
implementation.

� White-box testing doesn’t
take requirements into
account.

� White-box testing is
expensive and time
consuming.

� White-box testing requires
developer with advanced
knowledge

� It is not realistic to test every
single existing condition of
the application.

Staff Discount Program
� The owner of a shop has decided that her staff can have a 10

percent discount on all their purchases. If they spend more than
£15, then the total discount is increased by 50 pence. The price
of each item being purchased is input into the program. When
-1 is entered, the total price is displayed, as well as the
calculated discount and the final price to pay.

� For example, the values £5.50, £2.00 and £2.50 are input,
equalling £10.00. The total discount would equal £1.00 (10% of
£10.00), with the total price to pay equalling £9.00.

� A second example would have purchases of £10.50 and £5.00,
equaling £15.50. In this case, as the total value is over £15, the
discount would be £2.05 (10% of £15.50 is £1.55, plus 50p as the
original total is over £15), meaning that the total price to pay
would be £13.45.

References
� Google ☺

� Software Testing and Continuous Quality Improvement by William E. Lewis

� Software Testing Principles and Practices by Srinivasan Desikan

� Software testing and quality assurance. Theory and practice by Kshirasagar
Naik and Priyadarshi Tripathy

� http://books.google.com.ua/books?id=Yt2yRW6du9wC&printsec=frontcove
r&hl=ru#v=onepage&q&f=false

� ISTQB Syllabus

� White-box testing Techniques (Attached)

� Data Flow Testing (Attached)

Thanks to

� Yanina Hladkova

� Andriy Yudenko

� Ivan Dmitrina

