THE FORMAL NORMAL FORM DEGENERATE SINGULAR POINTS IN THE CASE OF CASE OF FOCUS

Tasmukhametova Aliya Bazarbaevna scientific adviser: Voronin Sergey Mikhaylovich

OBJECTIVE

• In the work we study the problem for the case $\lambda \notin \mathbf{R}, r = 2$. Have a normal form $(V_H + x^p \varphi(x) E_H) \cdot (1 + x^q \phi(x)),$

where $E_H = (x, 2y), V_H = (y + (1 + \lambda)x^2, -2\lambda x^2),$ Formal normal form takes the form

 $(\mathsf{y}+(1+\lambda)x^2+x^2\varphi(x),-2\lambda x^2+2xy\varphi(x))\cdot(1+\phi(x)),$

AIM OF WORK

 The direct study of a formal normal form with the feature type Bogdanov-Takens for a particular case, for the purpose of comparison with the results of Zolondek-Strozhinoi.

PREFACE

 Takens in 1974 for the system of equations of the form

$$\dot{x} = y + \dots, \quad \dot{y} = \dots$$

. .

got a fairly simple formal normal form

$$\dot{x} = y + a(x), \dot{y} = b(x)$$

but this formal normal form admits of further simplification.

 General(for all cases) the formal normal form was obtained in 2015. This Form looks very complicated and has the form:

 $(V_H + x^p \varphi(x) E_H) \cdot (1 + x^q \psi(x))$

THEOREM

• The field V (для случая $\lambda \notin \mathbb{Q}$) is formally equivalent to one of the following fields

$$egin{aligned} & \mathsf{N}_{p;q}^{r;\lambda}:(\mathsf{V}_{\mathcal{H}}+x^{p}arphi(x)\mathsf{E}_{\mathcal{H}})\cdot(1+x^{q}\psi(x)), \ \mathsf{гдe}\ r-1$$

formal power series. Forms Npice are the only modulo substitutions

$$(x, y) \longrightarrow (\alpha x, \alpha y), \alpha^{r-1} = 1..$$

DEFINITION

• Two analytical vector fields V, V_0 in $(\mathbb{C}^2; 0)$ are formally equivalent, then and only then when there is a formal diffeomorphisms $H \in (\mathbb{C}^2; 0)$

$$H' \cdot V = V_0 \circ H$$

THE FUNCTIONAL EQUATION OF EQUIVALENCE AND THE SCHEME OF REDUCTION TO SYSTEMS OF LINEAR EQUATIONS

 $H' \cdot V = V_0 \circ H$

$$H(x,y) = (x + \sum c_{ij}x^{i}y^{j}, y + \sum d_{ij}x^{i}y^{j})$$

$$V = (y + (1+\lambda)x^{2} + \sum a_{ij}x^{i}y^{j}, -2\lambda x^{2} + \sum b_{ij}x^{i}y^{j})$$

$$V_{0} = (y + (1+\lambda)x^{2} + \sum \widetilde{a_{ij}}x^{i}y^{j}, -2\lambda x^{2} + \sum \widetilde{b_{ij}}x^{i}y^{j})$$

17aliya93@mail.ru

• We substitute the expansions H, V, V_0 in the main equation :

$$\begin{pmatrix} (1+2c_{20}x+c_{11}y++...)(y+(1+\lambda)x^{2}+a_{11}xy+...)+\\ +(c_{11}x+2c_{02}y+c_{21}x^{2}++...)((-2\lambda)x^{2}+b_{11}xy+...)\\ (2d_{20}x+d_{11}x+3d_{30}x^{2}+...)(y+(y+(1+\lambda)x^{2}++...)+\\ +(1+d_{11}x+2d_{02}y+d_{21}x^{2}+...))((-2\lambda)x^{2}+b_{11}xy+...) \end{pmatrix} = \\ \begin{pmatrix} (y+d_{20}x^{2}+...)+(1+\lambda)(x^{2}+c_{20}^{2}x^{4}+...)\\ -2\lambda(x^{2}+c_{20}^{2}x^{4}+...) \end{pmatrix} \end{pmatrix}$$

	c_{20}	c ₁₁	c ₀₂	c_{30}	c_{21}	c_{12}	<i>c</i> ₀₃	d_{20}	d ₁₁	d ₀₂	d_{30}	d_{21}	<i>d</i> ₁₂	<i>d</i> ₀₃	
1(2,0)								-1							
1(1,1)	2	5							-1						
1(0, 2)		1								-1					
1(3, 0)		-2λ									-1				
1(2, 1)	2a ₁₁	$b_{20} - \mu - \mu$	-4λ	3								-1			a (a
	a - 1							- X3				8 3 8			88 - 83 88 - 88
1(1, 2)	$2a_{02}$	$a_{11} + b_{02}$	$2(b_{11} - \mu)$		2								-1		a 2
1(0, 3)		a_{02}	$2b_{02}$			1								-1	
2(2,0)															
2(1, 1)								2							
2(0,2)									1						
2(3,0)	4λ							2μ	-2λ						
							A. 10								

INFERENCE

 After we solve this system of equations the formal normal form takes the form

$$\begin{cases} \dot{x} = y + (1+\lambda)x^2 \\ \dot{y} = -2\lambda x^2 + \sum \alpha_k x^{3k} + \sum \beta_k y x^{3k} + \sum \gamma_k x^{3k+1} \\ k = 1, \dots \end{cases}$$

We have 3 adjacent degree - 3 monoms from a formal normal form. Thus, our result is consistent with the result of Zolondek-Strozhinoi.

REFERENCES

 Formal normal form Zholandeka Strozhinoy — PWS Publishing, 1997

Thank you for attention!