

КОНВЕКТИВНЫЙ ТЕПЛОМАССООБМЕН

КОНВЕКТИВНЫЙ ТЕПЛО- и МАССООБМЕН

Перенос теплоты или массы, обусловленный макроскопическим (молярным) движением жидкости как целого (всегда сопровождается молекулярным переносом). Плотности потоков тепла и массы можно записать в форме законов Фурье и Фика, введя в них конвективный член (первый справа)

$$q = c_p \rho \ w \ T - \lambda \ grad \ T$$
, Bm/m^2 , $j = w \ C$ — $D \ grad \ C$, моль/($M^2 \cdot C$), $W - B \in KTOP$ линейной скорости жидкости, M/C .

Если c_{p} – массовая теплоемкость, то ${\it w}$ – среднемассовая скорость, если c_{p} – объемная, то ${\it w}$ – среднеобъемная.

ТЕПЛООТДАЧА

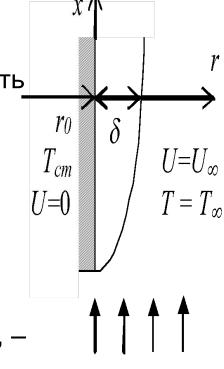
Конвективный теплообмен между твердой стенкой и жидкостью (капельной или газом).

Закон Ньютона – Рихмана:

плотность теплового потока

$$q = \alpha (T_c - T_{\varkappa}), \quad \text{BT/M}^2;$$

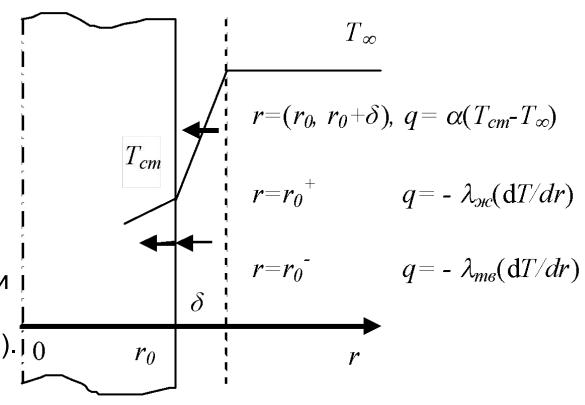
α, Вт/(м2·К) – **коэффициент теплоотдачи**, зависит от скорости и физических свойств жидкости, температуры, направления теплового потока.



ТЕПЛООБМЕН ПРИ ВЫНУЖДЕННОЙ КОНВЕКЦИИ

Причиной макроскопического движения жидкости является воздействие внешних сил (насос, вентилятор).

При описании конвективного теплообмена принимается, что на неподвижной поверхности скорость жидкости равна нулю (граничное условие «прилипания») и растет с удалением от поверхности до скорости невозмущенного набегающего потока. Зона у поверхности, в пределах которой существенно изменяются скорость и температура, пограничный слой.



Теплообмен при продольном обтекании пластины

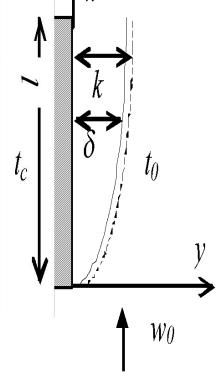
В пограничном слое жидкости толщиной δ перенос тепла вдоль оси r близок к молекулярному (теплопроводности). Температуры жидкости и стенки на поверхности равны (по аналогии с условием прилипания). 0

$$q = -\lambda_{xc} \frac{\partial T}{\partial r} \bigg|_{r_{o}} \approx \frac{\lambda_{xc} \left(T_{cm} - T_{\infty} \right)}{\delta} = \alpha \left(T_{cm} - T_{\infty} \right)$$

Г.И.Пальчёнок

Критерий Нуссельта

Уравнение теплоотдачи: конвективный поток теплоты равен потоку теплопроводностю через погран. слой жидкости при y = 0 (на поверхности):


 $\alpha \left(t_c - t_0 \right) = -\lambda_{\mathcal{H}} \left(\frac{\partial t}{\partial y} \right)_c \qquad \uparrow \qquad \uparrow \qquad \downarrow$

Введем безразмерные переменные:

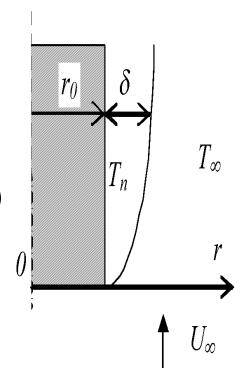
$$Y = y/l$$
, $\theta = (t - t_0)/(t_c - t_0)$

$$y = Y l, t = \theta (t_c - t_0) + t_0$$

$$\mathbf{N}\mathbf{u} \equiv \frac{\alpha l}{\lambda_{\mathbf{x}}} = -\left(\frac{\partial \theta}{\partial Y}\right)_{c}$$

Критерий Нуссельта – безразмерный коэфициент теплоотдачи.

Нестационарный конвективный теплообмен тв. тела


Поток тепла конвекцией равен потоку теплопроводностью внутри тела:

$$-\lambda_{me} \frac{\partial T_{me}}{\partial r}\bigg|_{r_0} = \alpha \left(T_n - T_\infty\right)$$

Безразмерные переменные:

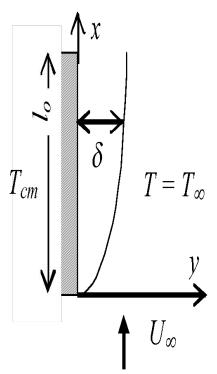
$$\xi = r/r_0$$
, $\theta = (T_{me} - T_{\infty})/(T_n - T_{\infty})$

$$-\frac{\partial \theta}{\partial \xi}\Big|_{1} = \text{Bi} \equiv \frac{r_{0}\alpha}{\lambda_{me}} = \frac{r_{0}/\lambda_{me}}{1/\alpha}$$

Критерий Био – соотношение внутр. и наружн. термических сопротивлений

Граничные условия 3-го рода при теплоотдаче

Поток тепла конвекцией равен потоку теплопроводностью *жидкости* через погран. слой:

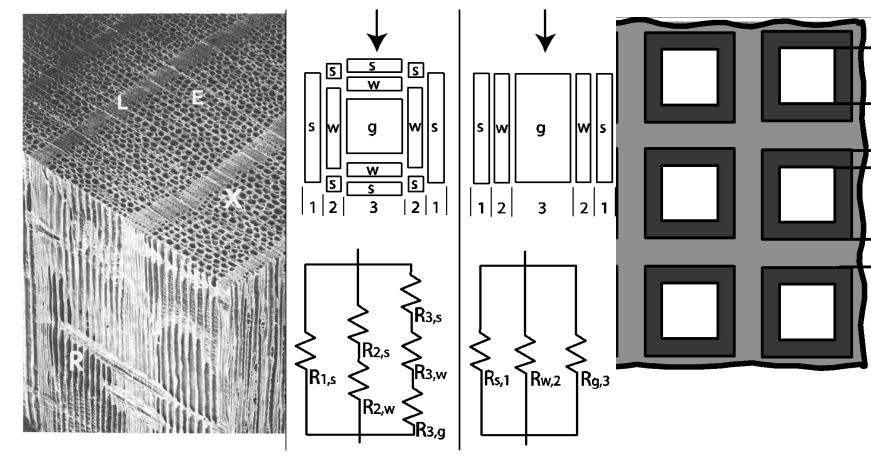

$$-\lambda_{\infty} \frac{\partial T_{\infty}}{\partial y}\bigg|_{y=0} = \alpha \left(T_{cm} - T_{\infty}\right)$$

Введем безразмерные переменные:

$$\xi = y / l_o, \ \theta = (T_{_{\mathcal{H}}} - T_{_{\infty}}) / (T_{_{cm}} - T_{_{\infty}})$$

$$y = \xi l_o, \ T_{_{\mathcal{H}}} = \theta (T_{_{cm}} - T_{_{\infty}}) + T_{_{\infty}}$$

$$-\frac{\partial \theta}{\partial \xi} \Big|_{\xi=0} = \text{Nu} \equiv \frac{\alpha l_o}{\lambda_{_{_{\mathcal{H}}}}}$$



Критерий Нуссельта – безразмерный коэф-т теплоотдачи

Термические сопротивления и эффективная теплопроводность древесины

Ламинарный и турбулентный режимы течения

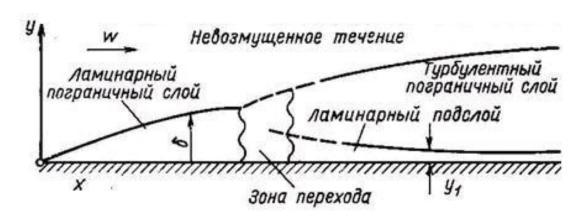


Схема пограничного слоя

$$\operatorname{Re}_{x} \equiv U_{\infty} x / v$$

- критерий Рейнольдса, соотношение сил инерции и вязкого трения в потоке

Ламинарный режим:
$$Re_x < 10^4$$
, $\delta/x \sim 1/Re_x^{0.5}$

 $Typбyлентный режим: Re_x > 10^5$

Ламинарный режим течения

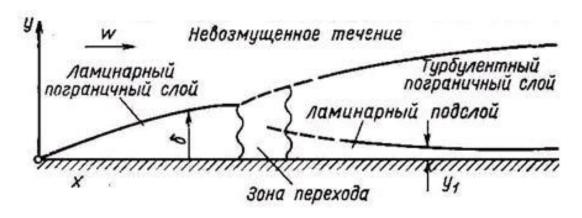


Схема пограничного слоя

$$Re_{x} < 10^{4}, \delta/x \sim 1/Re_{x}^{0.5},$$

 $k/\delta \sim 1/Pr^{0.33}, w_{x}/w_{\infty} \approx 1.5(y/\delta) + 0.5(y/\delta)^{3}$

Турбулентный режим течения

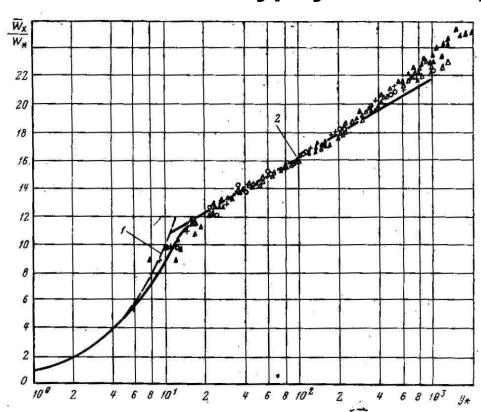


Рис. 7-8. Распределение безразмерной скорости по толщине турбулентного пограничного слоя.

А — внешняя область; Б — пристенная область (I — вязкий подслой, II — промежуточный слой); на рисунке масштабы толщины смещены.

$$Re_{x} > 10^{5}$$
, $k_{\Pi}/\delta_{\Pi} \sim 1/Pr^{0.33}$,

$$w_{x} = w^{*}y^{*} = (s_{c}/\delta)y$$
 (1)

$$\frac{\overline{w}_x}{w^*} = 5.6 \cdot \lg(y^*) + 4.9 \tag{2}$$

$$y^* = w^* y/v$$

Мгновенные значения скорости и температуры потока при турбулентном режиме течения

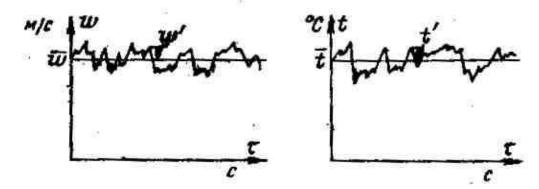
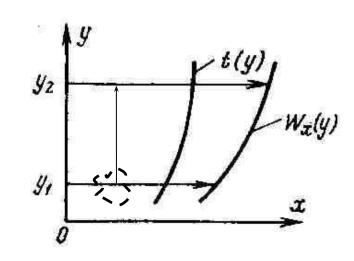


Рис. 4-9. Изменение скорости w и температуры t в неподвижной точке турбулентного потока.

$$t = \overline{t} + t', \quad w = \overline{w} + w'; \quad \overline{t} = \frac{1}{\Delta \tau} \int_{\tau}^{\tau + \Delta \tau} t d\tau$$

Турбулентные процессы нестационарны, но если \overline{t} , \overline{w} постоянны, могут считаться квазистационарными



Перенос при турбулентном режиме течения

$$q_{y} = -(\lambda + \lambda_{T}) \frac{\partial \overline{t}}{\partial y}$$

$$j_{y} = -(D + D_{T}) \frac{\partial \overline{C}}{\partial y}$$

$$s_{xy} = (\mu + \mu_{T}) \frac{\partial \overline{w}_{x}}{\partial y}$$

Эпюры средних параметров потока у стенки

 μ — динамический коэф-т вязкости, $H \cdot c/m^2$; $v = \mu/\rho$ — кинематический коэф-т вязкости, m^2/c ; c индексом «Т» — их турбулентные аналоги

Коэффициенты турбулентного переноса

$$a_{T} = \frac{\lambda_{T}}{\rho c_{p}} \implies \lambda_{T} = a_{T} \rho c_{p}$$

$$v_{T} = \frac{\mu_{T}}{\rho} \implies \mu_{T} = v_{T} \rho$$

$$a_{T} \sim v_{T} \sim D_{T} \sim l' w'_{y}; \quad w'_{y} \sim l' \frac{\partial \overline{w}_{x}}{\partial v}$$

 w_y ' — пульсационная скорость вдоль оси y, м/с; l' — масштаб турбулентности \sim длина пути смешения, м (длина коррелированного движения макрообъема жидкости, $\langle \text{вихря} \rangle \rangle$)

КРИТЕРИАЛЬНЫЕ ЗАВИСИМОСТИ ДЛЯ РАСЧЕТА ЛОКАЛЬНОЙ ТЕПЛООТДАЧИ ПРИ ПРОДОЛЬНОМ ОБТЕКАНИИ ПЛАСТИНЫ

$$\operatorname{Nu}_{x} = c \operatorname{Re}_{x}^{m} \operatorname{Pr}^{n}$$

$$Nu_{\text{\tiny MC}} \equiv \alpha x/\lambda$$
 – Критерий Нуссельта

$$\mathrm{Re}_{_{_{\mathrm{Y}}}} \equiv U_{_{\mathrm{D}}} \chi / v$$
 – Критерий Рейнольдса

Ламинарный режим:
$$c = 0.33$$
, $m = 1/2$, $n = 1/3$ (Re_x < 10^4)

Турбулентный режим:
$$c = 0.03$$
, $m = 0.8$, $n = 0.43$ (Re_x > 10^5)

СРЕДНИЙ КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ

$$\operatorname{Nu}_{x} = c \operatorname{Re}_{x}^{m} \operatorname{Pr}^{n} \implies \frac{\alpha}{\lambda_{xc}} x = \left(\frac{U}{v}\right)^{m} x^{m} \left(\frac{v}{a}\right)^{n}$$

$$\overline{\alpha} = \frac{1}{L} \int_{x=0}^{x=L} c \lambda_{3C} \left(\frac{U}{v}\right)^{m} \left(\frac{v}{a}\right)^{n} x^{m-1} dx$$

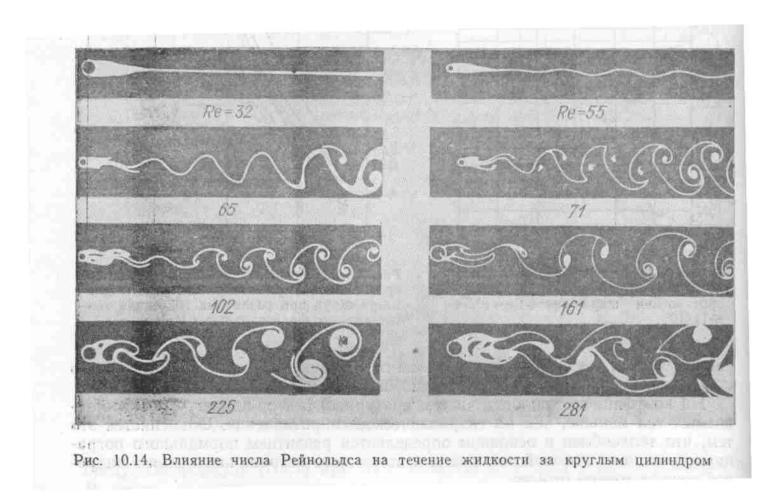
$$\overline{\alpha} = \frac{\lambda_{\infty}}{L} c \left(\frac{U}{v}\right)^m \left(\frac{v}{a}\right)^n \left[\frac{1}{m} \left(L^m - 0^m\right)\right]$$

$$Nu_{L} \equiv \frac{\overline{\alpha}L}{\lambda_{m}} = \frac{c}{m} Re_{L}^{m} Pr^{n}$$

Ламинарный режим: c/m = 0.66, m = 0.5, n = 0.33

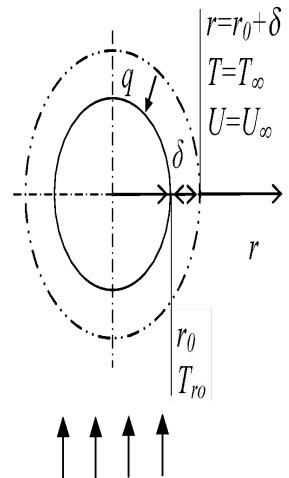
Турбулентный режим: c/m = 0.0375, m = 0.8, n = 0.43

Поперечное обтекание горизонтального цилиндра


$$\operatorname{Nu}_d = c \operatorname{Re}_d^m \operatorname{Pr}^n$$

	Re _d			
	< 40	40 - 100	$100 - 2 \cdot 10^5$	$> 2 \cdot 10^5$
С	0.76	0.52	0.26	0.023
m	0.4	0.5	0.6	0.8
n	0.37	0.37	0.37	0.40

Поперечное обтекание горизонтального цилиндра

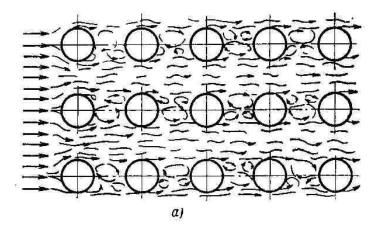

Конвективный теплообмен шара (сферы)

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0$$

$$Nu = \frac{h_c d}{k_{c,g}} = 2 + \frac{d}{\delta}$$

$$Nu = 2 + 0.6 Re^{0.5} Pr^{0.33}$$

(Фрёсслинг, Ранц и Маршал)



Теплоотдача горизонтального пучка труб

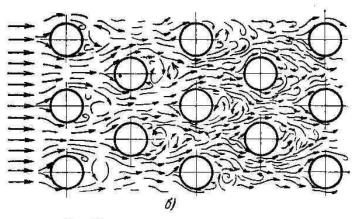


Рис. 3-38. Картина движения жидкости в коридорных (а) и шахматных (б) пучках из круглых труб.

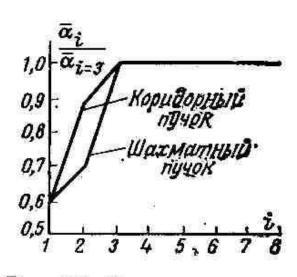
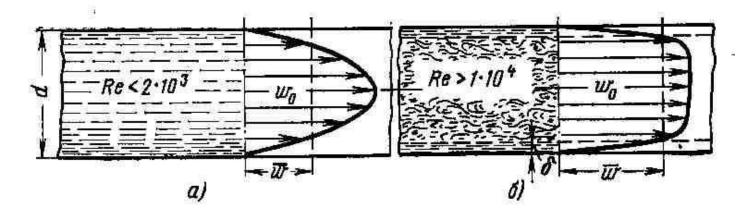
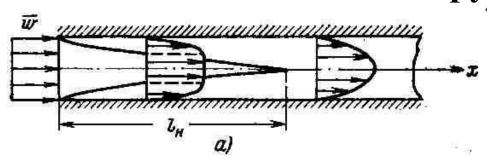
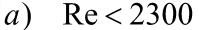
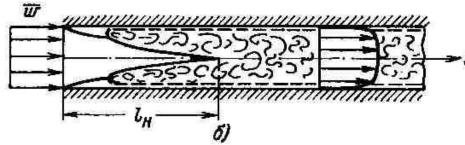


Рис. 9-9. Диаграммы изменения коэффициентов теплоотдачи по рядам коридорного и шахматного пучков труб.

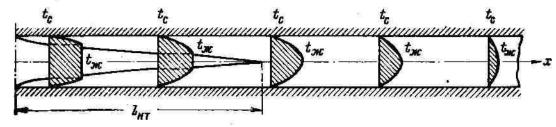
Теплоотдача при вынужденном течении жидкостив трубах


Рис. 3-10. Распределение скоростей по сечению при ламинарном (а) и турбулентном (б) режимах движения жидкости в трубе.


Гидродинамическая и тепловая стабилизация потока в трубе

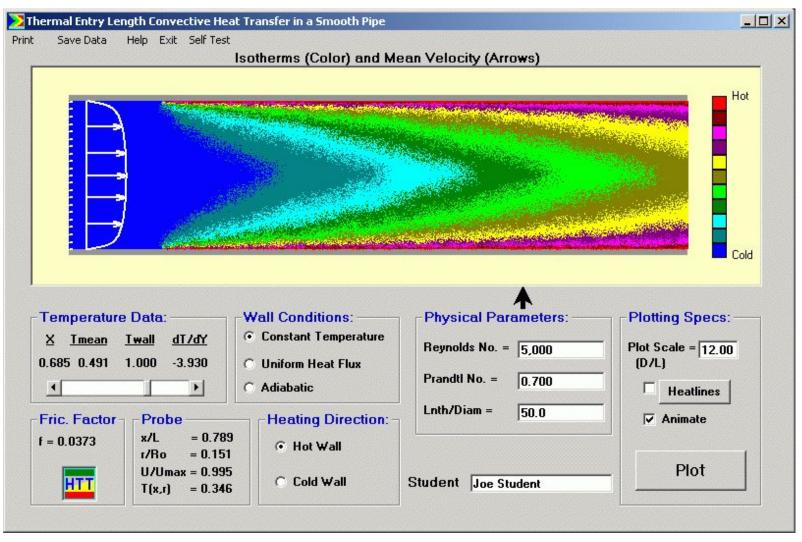
$$l_{H} = 0.05d \text{ Re}$$


$$l > l_{H}, w/w_{o} = (1 - y^{2}/r^{2})$$

$$6) \quad \text{Re} > 1 \cdot 10^4$$

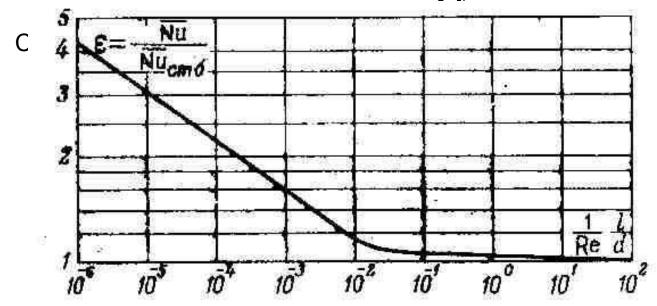
$$l_{\mu} \approx 15d$$

$$l > l_{_{\scriptscriptstyle H}}, \overline{w}/w_{_{\scriptscriptstyle O}} = 0.8 \div 0.9$$


Re < 2300

 $l_{\mu m} \approx 0.05 d \text{ Re Pr}$

Рис. 3-14. Изменение распределения температур по сечению и длине при движении жидкости в трубе.



Энергосбережение и возобновляемые источники энергии

Г.И.Пальчёнок

Критериальные зависимости для расчета теплообмена в трубе

Ламинарный поток, теплообмен с начала трубы, $L_{mp} > l_{нm}$

$$\langle \text{Nu} \rangle = 1.55 \left(\text{Re Pr} \frac{d}{l} \right)^{1/3} \left(\frac{\mu_c}{\mu_{sc}} \right)^{-0.14} \varepsilon_l$$

Турбулентный поток

Теплообмен с начала трубы, $L_{mp} > l_{\mu m}$

$$\langle Nu_{\mathcal{K}(x)d} \rangle = 0.022 \operatorname{Re}_{\mathcal{K}(x)}^{0.8} \operatorname{Pr}_{\mathcal{K}(x)}^{0.43} \varepsilon_l$$

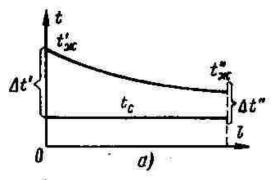
$$\varepsilon_l = 1.38 (x/d)^{-0.12}$$

$$\varepsilon_1 \approx 1$$

Трубы некруглого сечения

$$d_{_{\mathcal{H}B}} = \frac{4V}{F} = \frac{4f}{p}$$

Определяющая температура – всегда оговаривается


a)
$$t_{\mathbf{c}}$$
 тенки, б) $t_{\mathbf{ж}}$ идкости

$$B) \, \overline{t}_{nc} = 0.5(t_c + t_{sc})$$

$$z) \, \overline{t}_{nc} = 0.5(t'_{nc} + t''_{nc})$$

$$\partial$$
) $\overline{t}_{xc} = t_c \pm \Delta t_{noz} (+ oxn - e)$

$$\Delta t_{noe} = \frac{\Delta t' - \Delta t''}{\ln \frac{\Delta t'}{\Delta t''}}$$

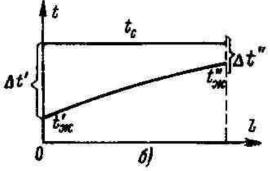


Рис. 3-17. Изменение температурного напора вдоль трубы при $t_c = \text{const.}$ $a = \text{охлаждение жидкости; } \delta = \text{кагрев жидкости.}$

ТЕПЛООБМЕН ПРИ СВОБОДНОЙ КОНВЕКЦИИ

Причиной макроскопического движения жидкости является ее нагревание около теплообменной поверхности, что приводит к объемному расширению жидкости и воздействию на неё

выталкивающей (Архимедовой) силы.

Нагретая (охлажденная) у поверхности жидкость имеет меньшую (большую) плотность, чем жидкость вдали от поверхности, и вытесняется вверх (вниз).

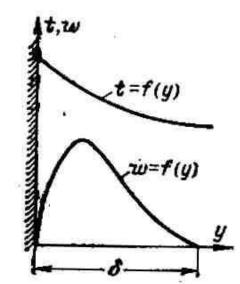


Рис. 4-8. Гидродинамический и тепловой пограничные слои при свободном движении.

СВ/КОНВЕКЦИЯ В ОГРАНИЧЕННОМ ПРОСТРАНСТВЕ

Рис. 3-27. Характер свободного движения воздуха около горизонтальных труб.

a - d = 28 мм; b - d = 250 мм; вид с торца.

Критерии подобия

Критерий Грасгофа

$$Gr = g\beta (T_c - T_{HC})l^3/v^2$$

Критерий Рэлея

$$Ra = (Gr Pr)$$

Температурный коэф-т объемного расширения жидкости

$$\beta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} \right)_p, \quad K^{-1}$$

$$\beta = \frac{1}{T}$$

$$\beta \approx \frac{1}{\rho_{\mathcal{K}}} \left(\frac{\rho_{\mathcal{K}} - \rho_{c}}{T_{c} - T_{\mathcal{K}}} \right)$$

Свободноконвективный теплообмен на вертикальной стенке, ламинарный режим,

$$10^3 < Ra_{x,x} < 10^9$$
, $q_c = const$

$$Nu_{x,x} = 0.6 Ra_{x,x}^{0.25} (Pr_{x}/Pr_{c})^{0.25}$$

$$\overline{\alpha}_l = \frac{5}{4}\alpha_{x=l}$$

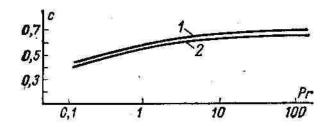
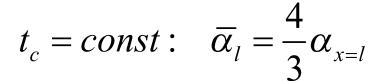



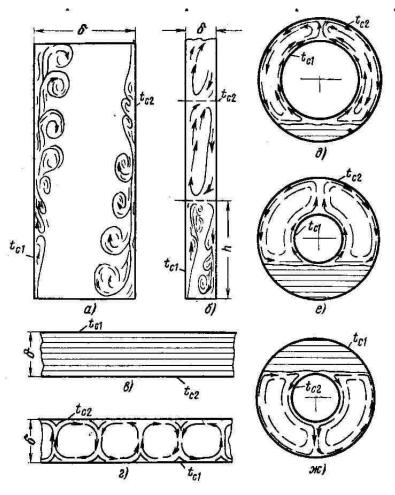
Рис. 10-3. Зависимость теплоотдачи при свободной конвекции от числа Прандтля.
$$I-q_{\bullet}$$
=const; $2-t_{c}$ =const.

Свободноконвективный теплообмен **вертикальной стенки** в большом объеме жидкости,

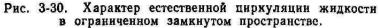
турбулентный режим: $Ra_{x,x} > 6.10^{10}$

$$Nu_{x,x} = 0.15 Ra_{x,x}^{1/3} (Pr_{x}/Pr_{c})^{0.25}$$

(α не зависит от линейного размера!)


Свободноконвективный теплообмен **горизонтальной трубы** в большом объеме жидкости, Ra = $10^3...10^8$

$$\langle Nu_{scd} \rangle = 0.5 Ra_{scd}^{0.25} (Pr_{sc}/Pr_c)^{0.25}$$



СВ/КОНВЕКЦИЯ В ОГРАНИЧЕННОМ ПРОСТРАНСТВЕ

 $t_{c1} > t_{c2}$

Св. конвекция в горизонтальных прослойках толщиной δ (плоских, цилиндрических, сферических)

При практических расчетах необходимо рассчитать *q:*

$$q = \frac{\lambda_{_{9KB}}}{\delta} (t_{c1} - t_{c2})$$

$$\varepsilon_{\kappa} = \lambda_{_{9\kappa\theta}} / \lambda = 0.18 \, \text{Ra}_{_{CP},\delta}^{0.25}$$

$$\varepsilon_{\kappa} = 1, \quad \lambda_{2\kappa\kappa} = \lambda$$

$$Ra_{cn \delta} > 10^3$$

$$Ra_{cp,\delta} > 10^3$$

$$Ra_{cp,\delta} < 10^3$$

Определяющая температура:

$$t_{cp} = 0.5(t_{c1} + t_{c2})$$

Св. конвекция в горизонтальных прослойках (2)

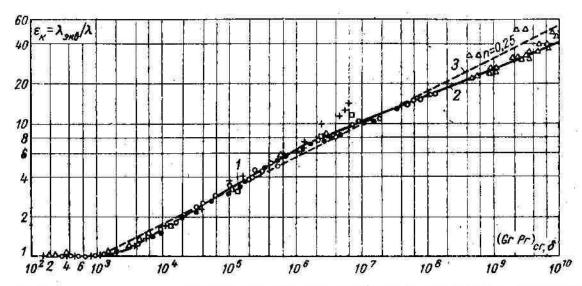


Рис. 10-9. Эквивалентная теплопроводность при свободном движении в ограниченном объеме.

+ — плоская горизонтальная газовая прослойка; \square — то же вертикальная; O — цилиндрическая газовая прослойка; \square — то же жидкостная; \triangle — шаровая газовая прослойка.

Определяющая температура:

$$t_{cp} = 0.5(t_{c1} + t_{c2})$$

Совместный теплообмен при свободной и вынужденной конвекции

Свободно-конвективный теплообмен имеет пренебрежимо низкую интенсивность при

$$Ra = Gr \cdot Pr < 10^3$$

