Сравнительная сила кислот:

1.карбоновые

кислоты R-СООН

2.фенолы Ar-OH

3.тиолы R-SH

4.многоатомные

СПИРТЫ HO-CH₂-CH₂-OH

5.одноатомные

спирты R-OH

6.амины R-NH₂

Сни

жен

ие

СИЛ

Ы

КИС

ЛОТ

реагенты

NaOH, Cu(OH)2, Na

«

«

Cu(OH)2, Na

Na

Кислотные свойства многоатомных спиртов

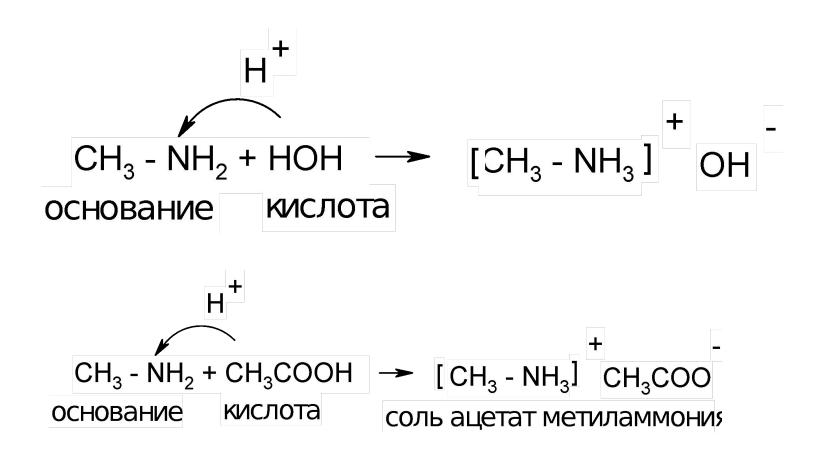
диол-1,2

хелатный комплекс синий раствор

Основания Брёнстеда - акцепторы протона

$$B:^{-} + H^{+} = B - H$$
 основание сопряженная кислота

анионы более сильные основания, чем молекулы


Сравнительная сила основных центров:

Э.Д. усиливают основность

Примеры:

$$CH_3 - NH_2 > CH_3 - OH > CH_3 - SH > CH_2 = CH_2$$

Основные свойства аминов

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Окислительно-восстановительные реакции (ОВР), сопровождаются переносом электронов от одной частицы к другой и изменением степени окисления.

Стандартный восстановительный потенциал ϕ^0

$$2H^+/H_2 \phi^0 = \theta B$$

Нормальный восстановительный потенциал ϕ_{σ}'

$$2H^{+}/H_{2}$$
 $\phi_{0}' = -0.42B$

Виды биохимических окислительновосстановительных процессов:

- 1. ФЕРМЕНТАТИВНЫЕ
- 2. СВОБОДНОРАДИКАЛЬНЫЕ

1А. дегидрогеназное окисление уменьшение числа атомов водорода в молекуле

$$CH_3 - OH$$
 \longrightarrow $H_2C=O$ спирт альдегид

1Б. Оксигеназное окисление – увеличение числа атомов кислорода в молекуле

Окислительновосстановительные реакции основных классов органических соединений

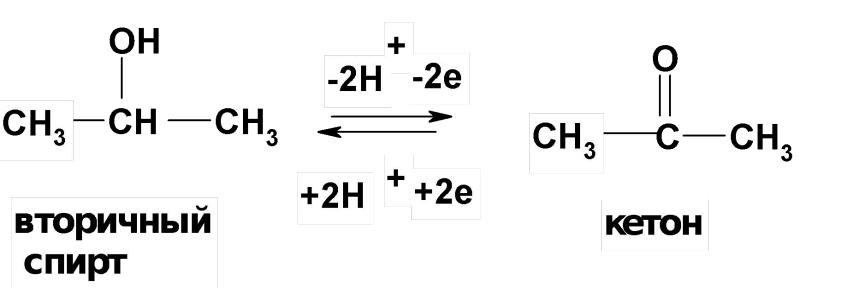
1.Алканы

Окислитель кофермент ФАД

2. Алкены

а) окисление $CH_2 = CH_2 \longrightarrow CH_2 - CH_2 \longrightarrow CH_2 - CH_2$ этилен этандиол-1,2

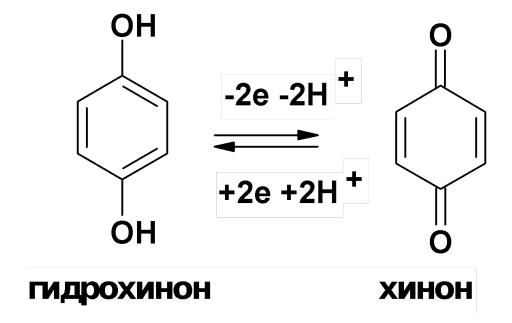
б) восстановление


$$CH_2 = CH_2 + H_2 - CH_3 - CH_3$$
ЭТИЛЕН ЭТАН

3. Спирты окислтели НАД+, K2Cr2O7, t; CuO

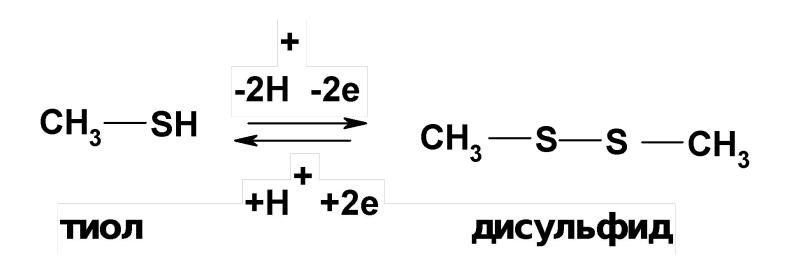
1) Метанол и первичные спирты обратимо окисляются до альдегидов, которые легко окисляются в карбоновые кислоты.

Вторичные спирты окисляются до кетонов



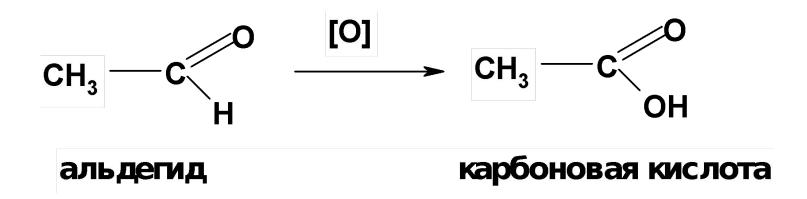
Третичные спирты устойчивы к окислению

$$COOH$$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$


4. Фенолы

Обратимо окисляются в хиноны

5. Тиолы


Обратимо окисляются до дисульфидов.

дигидролипоевая кислота липоевая кислота

6. Карбонильные соединения

Альдегиды окисляются до карбоновых кислот. Кетоны устойчивы к окислению.

Окислители in vitro:

Альдегиды и кетоны восстанавливаются в спирты. Альдегиды в первичные, кетоны во вторичные спирты

Восстановитель кофермент НАДН

II. Характерные реакции органических соединений

Основные понятия

Субстрат – вещество, у которого происходит разрыв связи у атома углерода. Определяет тип реакции

Реагент – вещество (частица), атакующая субстрат (радикал, электрофил, нуклеофил). Определяет механизм реакции.

Образование реагентов А. радикалы

$$X_{f}: f'Y \longrightarrow X' + Y'$$

гомолитический разрыв связи

свободные радикалы

Радикал (свободный радикал)

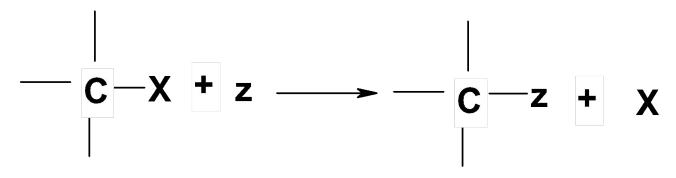
R – частица с неспаренным электроном:

H. CH. CI.

Определяет радикальный (цепной) механизм реакции.

В организме идут процессы пероксидного окисления

Б. нуклеофилы и электрофилы


$$E_{i}^{\dagger}: Nu \longrightarrow E^{\dagger} + Nu^{-}$$
 гетеролитический электрофил нуклеофил разрыв связи

• Нуклеофил –реагент с целым или частичным отрицательным зарядом (анион или молекула), содержит неподеленную электронную пару:

ОН⁻, NH₃, H₂O, CH₃OH,

Электрофил - реагент с целым или частичным положительным зарядом (катион или молекула): H⁺, SO₃

Типы реакций: 1. замещение S

характерны для насыщенных, ароматических, *p*, π-сопряженных соединений

2. присоединение А

$$>C=C< + E-Y \longrightarrow >C-C<$$

характерны для ненасыщенных соединений, содержащих т-связи и малых циклов (циклопропан, циклобутан)

3. элиминирование E реакция, обратная присоединению

характерны для спиртов, галогеналканов, аминов.

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R	S _N	S _E
Присоеди не ние А	A _R	A _N	A _E

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S _N	S _E
Присоеди не ние А	A _R	A _N	A _E

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S _N	S _E
Присоеди не ние А	A _R	A _N	А Е Алкены, алкины, диены, малые циклоалканы

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S Палогеналканы, спирты,	S _E
Присоеди не ние А	A _R	A _N	А _Е Алкены, алкины, диены, малые циклоалканы

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S _N Галогеналканы, спирты,	S _E
Присоеди не ние А	A _R	А _N Альдегиды, кетоны	А _Е Алкены, алкины, диены, малые циклоалканы

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S _N Галогеналканы, спирты, карбоновые кислоты и их ф. производные	S _E
Присоеди не ние А	A _R	А _N Альдегиды, кетоны	А Е Алкены, алкины, диены, малые циклоалканы

Характерные реакции основных классов органических соединений

	Радикальное R	Нуклеофильное N	Электрофильное Е
Замещен ие S	S _R Алканы, циклоалканы	S _N Галогеналканы, спирты, карбоновые кислоты и их ф. производные	S _E ароматические
Присоеди не ние А	A _R	А _N Альдегиды, кетоны	А _Е Алкены, алкины, диены, малые циклоалканы

Электронодоноры активизируют субстрат в реакциях S_E , A_E

Электроноакцепторы активизируют субстрат в реакциях S_N , A_N .

Алканы и циклоалканы S_R, радикальное замещение. Цепной механизм реакций (стр.118-121 Тюкавкина)

• Инициирование цепи

$$R \mapsto H + R$$
• Рост цепи
 $R' + O_2 \longrightarrow RO-O'$
 $RO-O' + R \mapsto RO-OH + R'$

• Обрыв цепи

$$R' + RO - O' \longrightarrow RO - OR$$

Алкены А_Е , электрофильное присоединение

(стр.123-135 Тюкавкина)

Гидрирование Галогенирование

$$CH_2 = CH_2 + H_2 \longrightarrow CH_3 - CH_3$$

$$CH_2 = CH_2 + CI_2 \longrightarrow CH_2 - CH_2$$

$$CI \quad CI$$

Гидрогалогенирование

$$CH_2 = CH_2 + HCI$$

$$CH_2 - CH_2$$

$$H$$

$$CI$$

Гидратация

$$CH_2 = CH_2 + HOH \longrightarrow CH_3 - CH_2 - OH$$

правило Марковникова

• В несимметричных алкенах водород присоединяется к более гидрогенизированному атому углерода при двойной связи

$$\delta + \delta CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_$$

 Исключение, если при двойной связи имеется Э.А. или реакция идет по свободнорадикальному механизму

Ароматические соединения S_E, электрофильное замещение

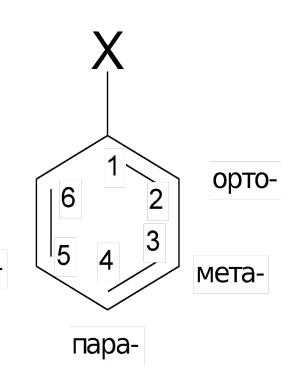
(стр.135-144, Н.А. Тюкавкина)

- 1. Галогенирование
- 2. Нитрование
- 3. Сульфирование

Э.Д.- активируют Э.А.- дезактивируют реакцию

Ориентирующее действие заместителей в бензольном кольце

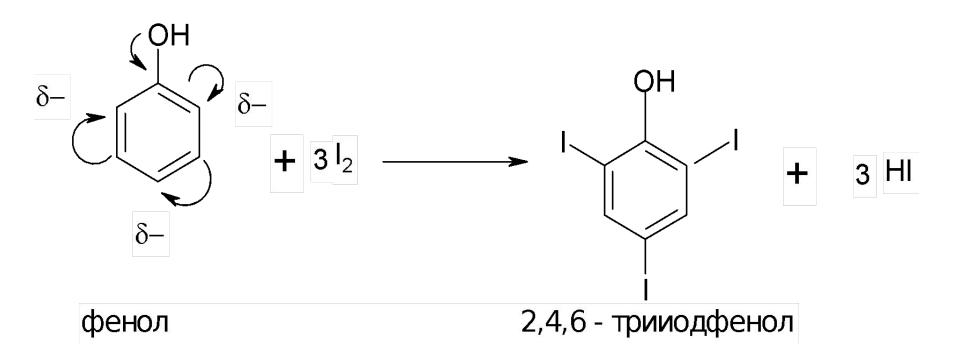
Заместители (ориентанты) І рода направляют атаку электрофила в *орто-* и *пара-* положения (2,4,6).


Примеры:

-OH, -NH₂, -Hal, -CH₃.

Заместители II рода направляют атаку электрофила в метаположение (3 или 5).

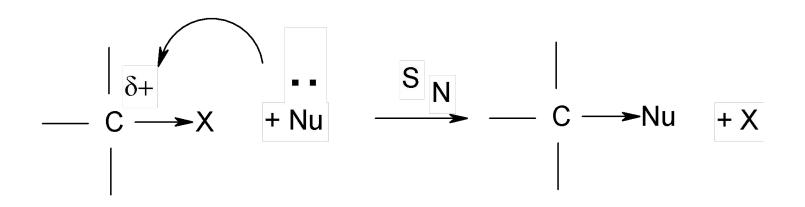
Примеры:


-COOH, -CHO, -SO₃H, -NO_{2.}

орто-

мета-

Пример: галогенирование фенола идет очень активно в несколько положений, гидроксил- сильный Э.Д. Образуется 2,4,6-трииодфенол, гидроксил – ориентант I рода.

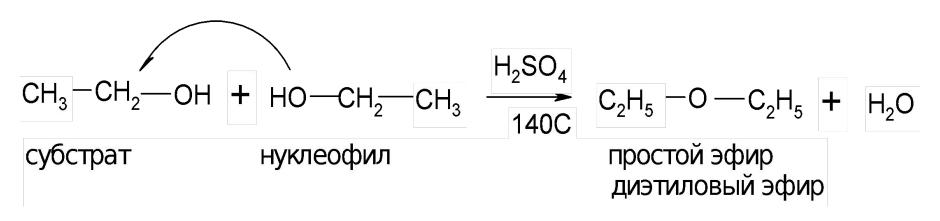


Спирты

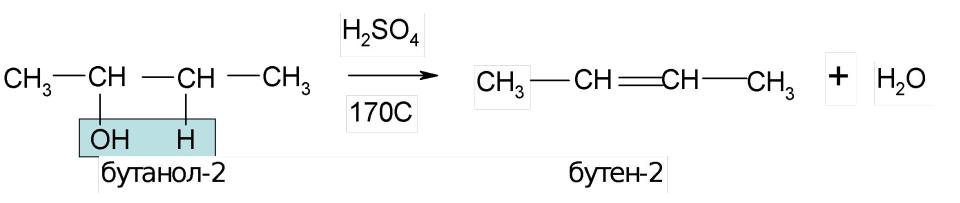
$$CH_3$$
 $-CH_2$ $-O$ $-CH_2$ $-CH_3$ $-CH_3$

водородные связи

Реакции нуклеофильного замещения S_N у насыщенного атома углерода.

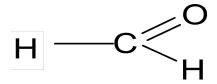


Спирты, простые эфиры, тиолы, сульфиды, алифатические амины


Характерные химические реакции спиртов

Нуклеофильное замещение S_{N.}
 А.Спирты и субстраты и нуклеофилы.
 (О-алкилирование)

Пример: межмолекулярная дегидратация


2. Внутримолекулярная дегидратация, Е

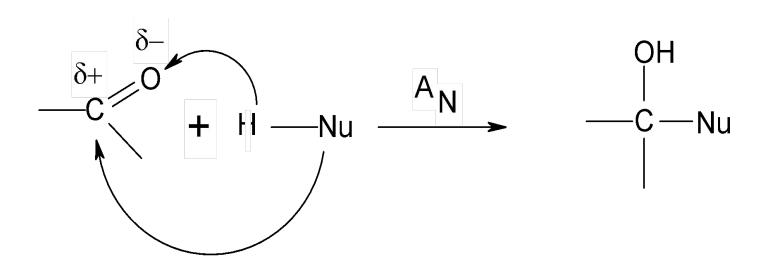
правило Зайцева: водород отщепляется от менее гидрогенизированного атома углерода

Карбонильные соединения: альдегиды и кетоны

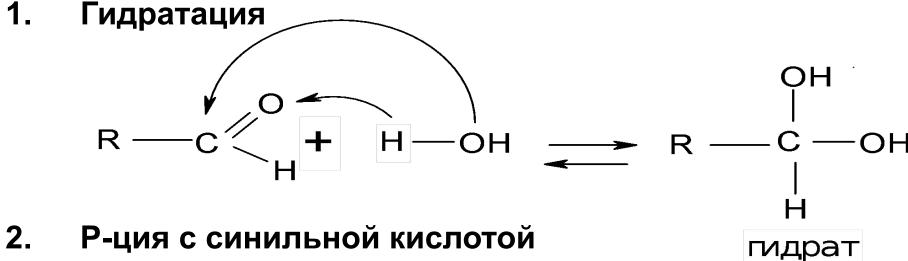
• Альдегиды

Метаналь или формальдегид

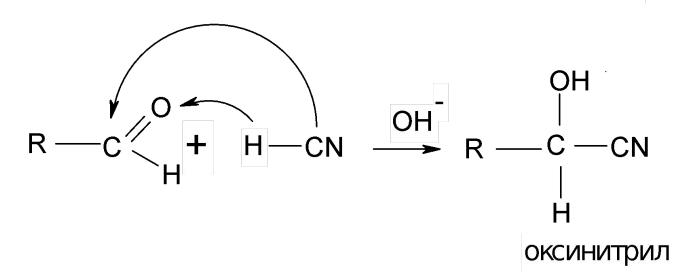
$$CH_3$$
 $C < C$

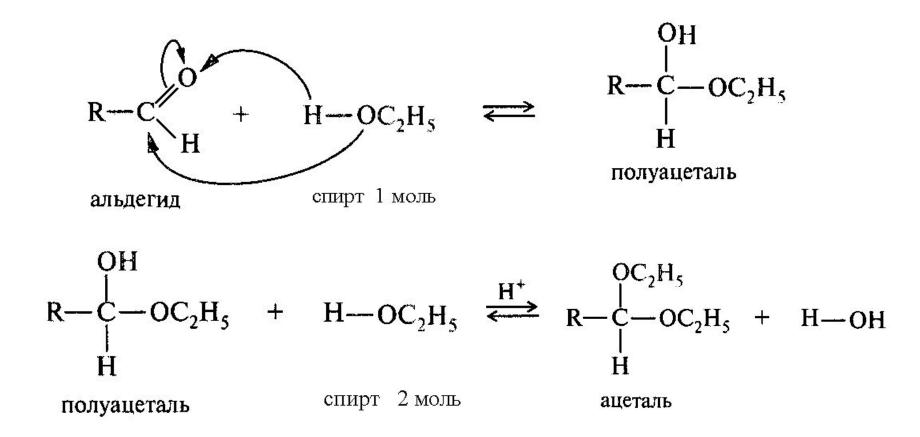

Этаналь или ацетальдегид или уксусный альдегид • Кетоны

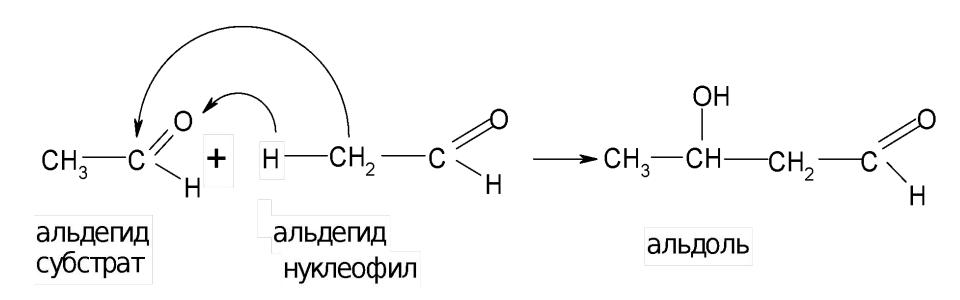
пропанон или ацетон


$$\begin{array}{c|c} \mathbf{CH_3} & \mathbf{C} - \mathbf{CH_2} - \mathbf{CH_3} \\ || & \\ \mathbf{O} \end{array}$$

бутанон


Реакция нуклеофильного присоединения, An

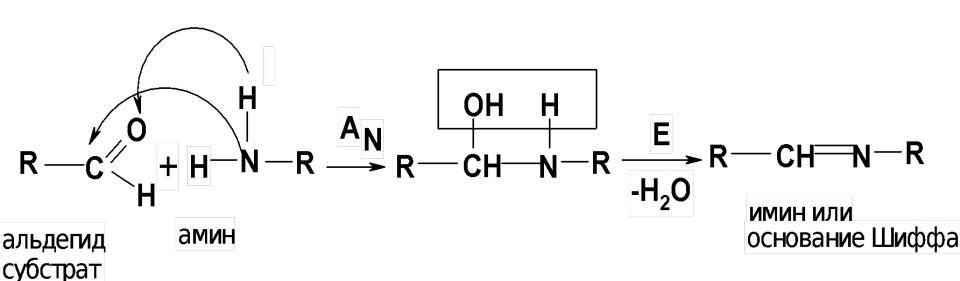

Примеры реакций А


Р-ция с синильной кислотой

3. Реакция со спиртами. Образование полуацеталей (полукеталей) и ацеталей (кеталей)

4. Альдольная конденсация

В результате углеродный скелет удлиняется на два атома углерода

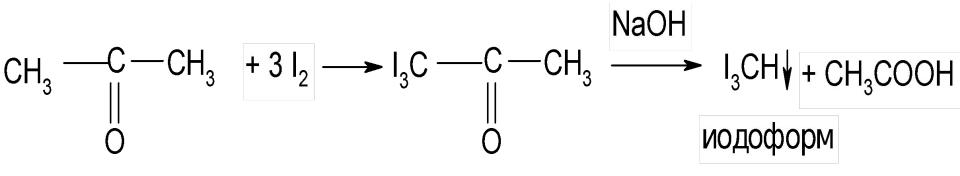

Дисмутация альдегидов

Альдегиды, у которых отсутствует атом водорода на втором атоме углерода (αСН-кислотный центр) вступают в реакции дисмутации или диспропорционирования

альдегид спирт кислота

5.Реакции присоединения – отщепления (A_N-E) с аминами и их производными

А. реакция с аминами

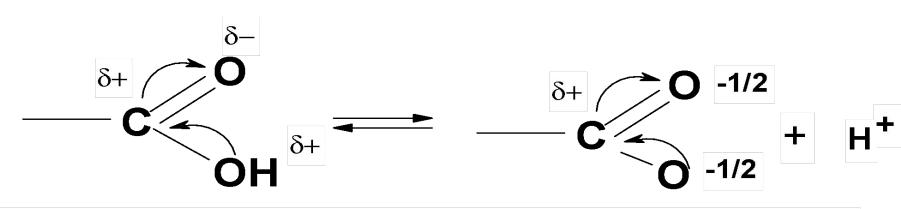

0

Б. С гидроксиламином NH₂ – OH альдегиды и кетоны образуют оксимы: R – C=N - OH

В. С гидразином NH₂ – NH₂ альдегиды и кетоны образуют гидразоны:

$$R - C = N - NH_2$$

Иодоформная проба

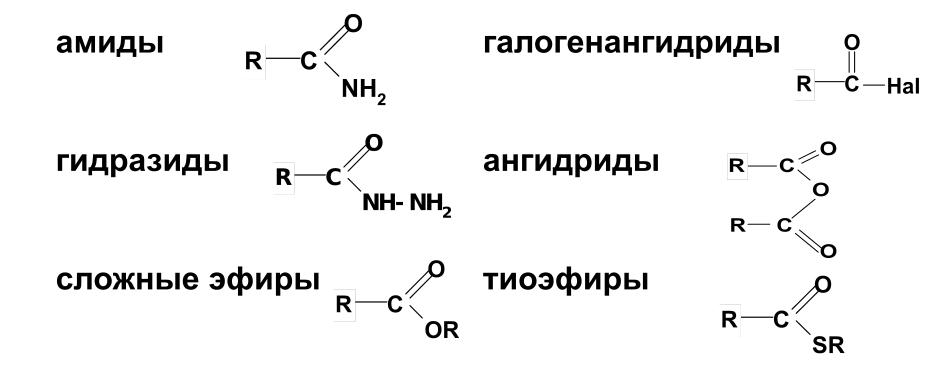


Карбоновые кислоты и их функциональные производные, S_N

дикарбоновые

кислоты СОЛИ HOOC-COOH щавелевая оксалаты HOOC-CH,-COOH малоновая малоаты HOOC-CH,-CH,- COOH янтарная сукцинаты HOOC(CH₂)₃ COOH глутаровая глутараты малеиновая (цис-) фумаровая (транс-) фумараты

Строение карбоксильной группы

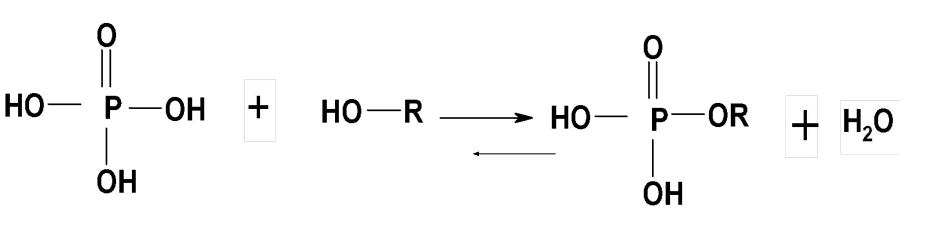

карбоксил

карбоксилат-анион

функциональные карбоновых кислот

производные

Реакции нуклеофильного замещения S_N карбоновых кислот

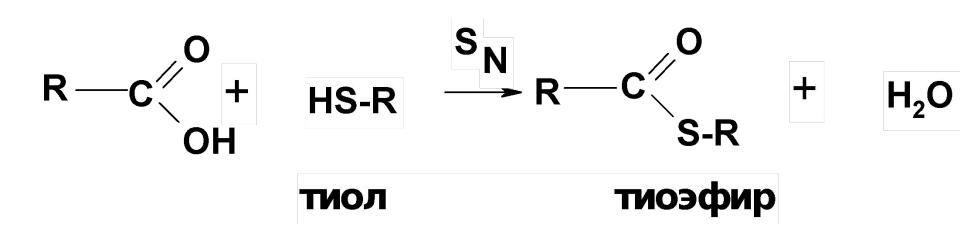

1. Этерификация

кислота

спирт

сложный эфир

Фосфорилирование спиртовых гидроксилов (S_N)



кислота

спирт

сложный эфир

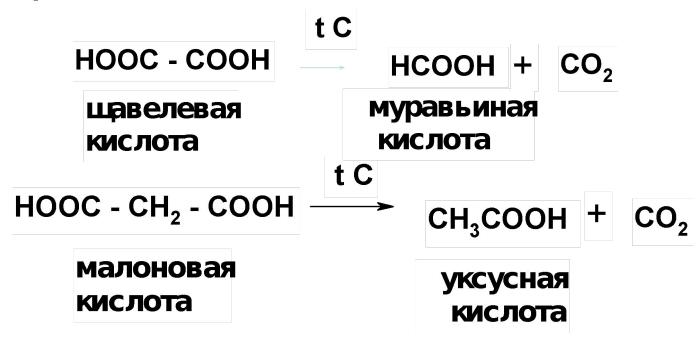
Образование тиоэфиров (s-ацилирование)

Образование амидов, N-ацилирование

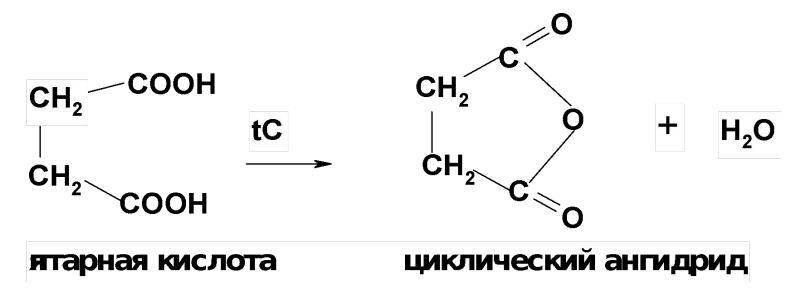
$$R - C \stackrel{O}{\longleftrightarrow} + H_2N-R \longrightarrow R - COO NH_3-R \longrightarrow R - COO NH_3$$

2. Реакции S_N функциональных производных. Гидролиз сложных эфиров

а) кислый катализ, гидролиз обратим


$$CH_3$$
— $C^{O}_{O-C_2H_5}$ + H_2O CH_3 — C^{O}_{OH} + H_2O + H_2O CH_3 СПИРТ

в) щелочной гидролиз (омыление) необратим


$$CH_3$$
 — C — CH_3 — CH_3 — CH_3 — CH_2 — CH_3 — $CH_$

Специфические реакции дикарбоновых кислот

1. Реакция декарбоксилирования идет при нагревании щавелевой и малоновой кислот

2. При нагревании янтарной, глутаровой малеиновой кислот образуется циклический ангидрид

