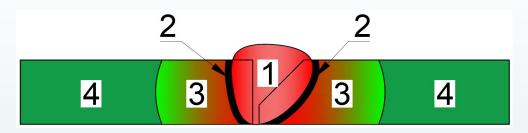
Соединения элементов металлоконструкций

Сварные соединения

Начать работу

К содержанию

Сварное соединение – это неразъёмное соединение, полученное посредством установления межатомных связей между соединяемыми частями при их нагревании

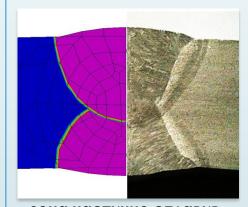

Сварное соединение неоднородно – оно имеет <u>сложную структуру</u>, которая возникает вследствие неравномерного нагрева металла в окрестности точки сварки до высоких температур.

Для учёта особенностей работы и расчёта сварные соединения принято разбивать на четыре типа: <u>стыковые</u>, <u>тавровые</u>, <u>угловые</u> и <u>нахлёсточные</u>.

Для оценки прочности сварное соединение разбивают на несколько основных зон, каждая из которых имеет свои прочностные свойства. При оценке прочности соединения, как правило, рассчитывают две основные зоны: сварной шов и границу сплавления. Сварные швы, в свою очередь тоже разбивают на типы, которых всего два: стыковые и угловые.

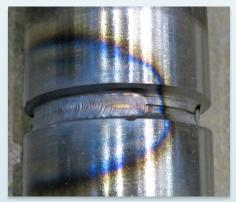
Неоднородность сварного соединения приводит к появлению значительных остаточных напряжений, что создаёт опасность разрушения как при статическом, так и при циклическом нагружении (усталость). Поэтому к выбору сварного шва следует подходить очень ответственно.

Структура сварного соединения


1 Сварной шов

участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла.

Он же: металл шва или просто МШ


2 Граница сплавления

зона частично сплавившихся зёрен на границе основного металла и металла шва

Она же: ГС, околошовная зона или просто ОШ

3 Зона термического влияния

участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева

Она же: 3TB

4 Основной металл

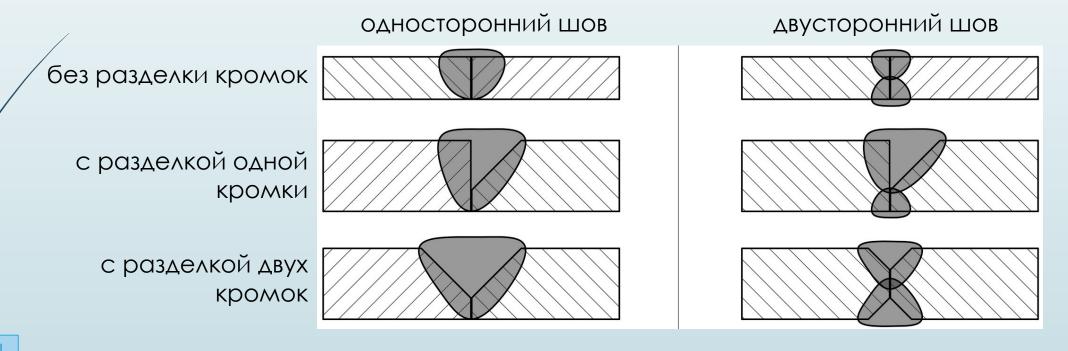
металл соединяемых элементов, не изменившийся в процессе сварки.

Он же:

Типы сварных швов

- •Стыковой шов
- •Шов с полным проплавлением хотя бы одной из соединяемых деталей
- •Нагрузка в таком шве передаётся без смещения из плоскости листа
- Расчёт таких швов ведётся по эквивалентным напряжениям

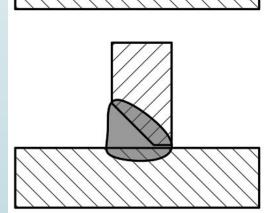
- •Угловой шов
- •Шов с неполным проплавлением соединяемых деталей
- •Нагрузка в таком шве передаётся со смещением из плоскости листа
- <u>Расчёт</u> таких швов ведётся по касательным напряжениям

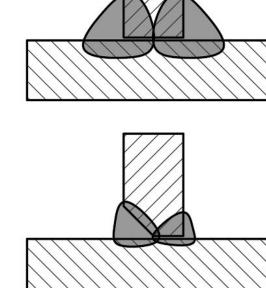

Формы и размеры сварных швов <u>стандартизированы</u>, однако, при необходимости, конструктор может разрабатывать сварные швы со своими формой и размерами.

Стыковые сварные соединения

Стыковое соединение соединяет кромки листов лежащих в одной плоскости и выполняется <u>стыковым швом</u>. Шов может быть наложен с одной стороны соединения (односторонний шов) и с двух сторон (двусторонний шов). Кроме того швы различают по подготовке кромок соединяемых деталей – с разделкой и без разделки кромок.

Форма и размеры сварных швов и обработки кромок определяются соответствующим <u>стандартом</u>.

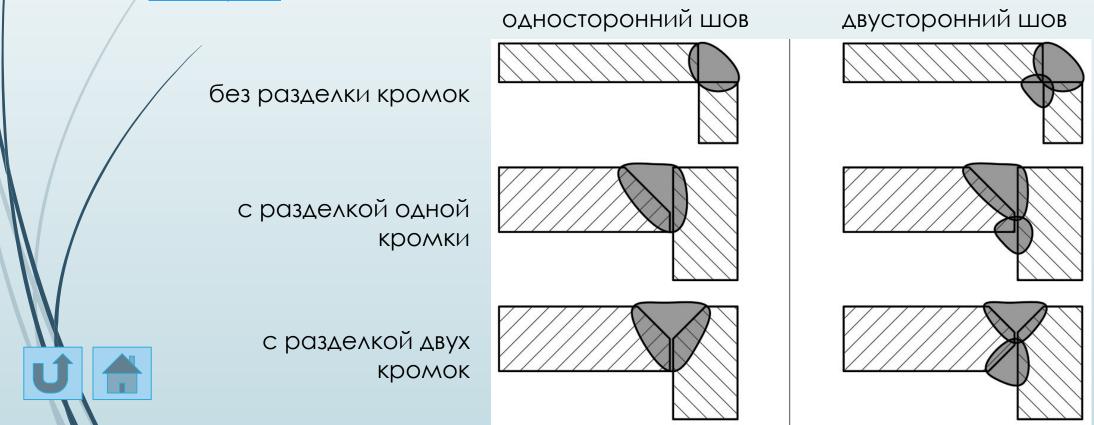

Тавровые сварные соединения


Тавровое соединение соединяет кромку одного листа с поверхностью другого и выполняется стыковыми и угловыми швами. Шов может быть наложен с одной стороны соединения (односторонний шов) и с двух сторон (двусторонний шов). Кроме того швы различают по подготовке кромки одной из соединяемых деталей – с разделкой и без разделки. Форма и размеры сварных швов и обработки кромок определяются соответствующим стандартом.

односторонний шов

двусторонний шов

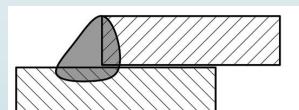
без разделки кромок



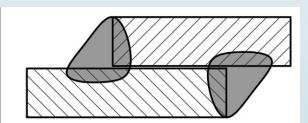
с разделкой кромки

Угловые сварные соединения

Угловое соединение соединяет кромки листов лежащих в пересекающихся плоскостях и выполняется стыковыми и угловыми швами. Шов может быть наложен с одной стороны соединения (односторонний шов) и с двух сторон (двусторонний шов). Кроме того швы различают по подготовке кромок соединяемых деталей – с разделкой и без разделки кромок. Форма и размеры сварных швов и обработки кромок определяются соответствующим стандартом.



Нахлёсточные сварные соединения

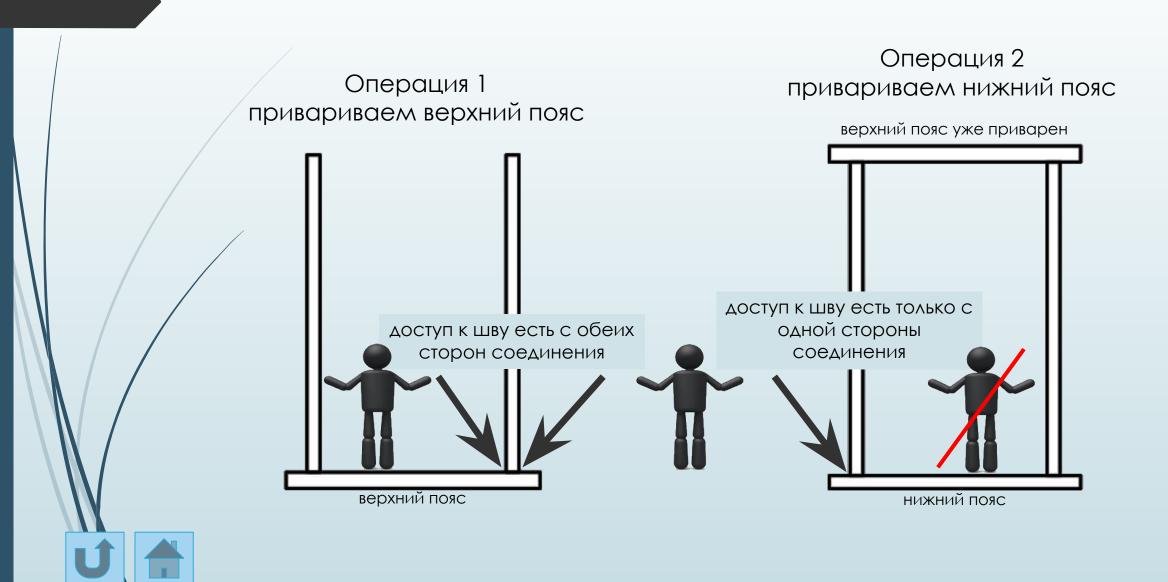

Нахлёсточное соединение соединяет листы, лежащие в параллельных плоскостях, при этом кромки обоих листов свариваются с поверхностью смежного листа. Такое соединение выполняется только угловыми швами. Шов может быть наложен с одной стороны соединения (односторонний шов) и с двух сторон (двусторонний шов). Швы нахлёсточных соединений выполняются без разделки кромок.

Форма и размеры сварных швов определяются соответствующим стандартом.

двусторонний шов

Указания по проектированию сварных соединений для металлоконструкций кранов

🛮 Выбор вида сварки


- 1. Для длинных ответственных сварных соединений (е. g. для соединения поясов балок со стенками) следует применять автоматическую сварку.
- 2. Для коротких сварных швов, там где применение сварочного автомата невозможно или нецелесообразно (e. g. для соединения диафрагм со стенками и поясами), следует применять полуавтоматическую сварку.
- 3. Ручную сварку применяют, как правило, при отсутствии оборудования или невозможности его доставки к месту сварки в основном при проведении ремонтных работ или монтажных работ на высоте).
- А. Наиболее универсальным способом сварки является сварка в среде защитных газов, сварку под флюсом есть смысл применять при соединении материалов с плохой свариваемостью.

Выбор формы шва и соединяемых кромок

- 1. Выбор формы шва и разделки кромок зависит от толщины свариваемых деталей (соответствующие ограничения приведены в стандартах).
- 2. При выборе сварного шва следует отдавать предпочтение двусторонним швам.
- 3. В случае невозможности применения двустороннего шва (**е. g.**), применяют односторонний шов на остающейся подкладке.
- 4. При прочих равных условиях меньшую концентрацию напряжений даёт шов с разделкой кромок, поэтому при возможности следует выбирать его.
- 5. При проектировании соединений листов под прямым углом тавровые швы следует предпочитать угловым они позволяют добиться лучшей проварки и, следовательно, лучшего качества соединения.

Пример – сборка коробчатого элемента

Расчёт соединений со стыковыми швами

Сварные соединения, выполненные с применением стыковых сварных швов, при перегрузке разрушаются по основному металлу на некотором удалении от шва.

Проверку прочности выполняют по условию:

где

 $\sigma_{\rm e} \leq \gamma_{\rm n} \cdot \gamma_{\rm d} \cdot \gamma_{\rm c} \cdot R_{\rm y}$

 $\sigma_{\rm e}$ – эквивалентные напряжения по теории Мизеса, которые могут быть определены МКЭ или аналитически;

 γ_n – <u>коэффициент надёжности по назначению конструкции</u>, определяемый в зависимости от вида и последствий повреждения;

γ_d – <u>коэффициент надёжности математической модели</u> сварного соединения, принимаемый в зависимости от типа и метода расчёта, типа сварного соединения и напряжённого состояния шва;

у_с – коэффициент условий работы металла шва и околошовной зоны, принимаемый равным 1,00 при физическом контроле качества швов, и 0,85 при визуально-измерительном контроле;

 R_y – <u>расчётное сопротивление</u> материала по пределу текучести, принимаемое по стандарту, техническим условиям либо по результатам сертификационных испытаний.

Расчёт соединений со стыковыми швами

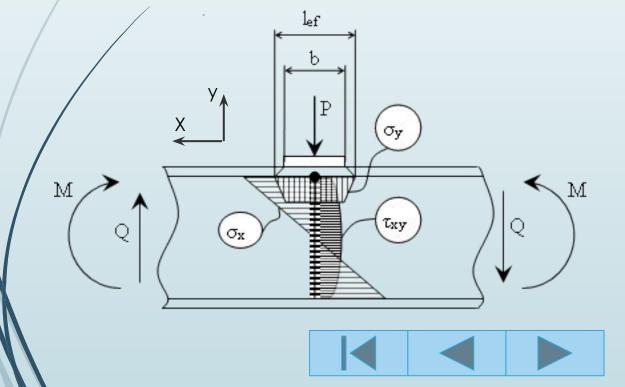
Для тонкостенных конструкций, как правило, характерно двухосное напряжённое состояние, поскольку на свободной поверхности листа напряжения не возникают. В этом случае при определении эквивалентных напряжений учитываются только три компонента тензора: σ_x , σ_y , τ_{xy} . Формула эквивалентных напряжений по теории Мизеса будет иметь вид:

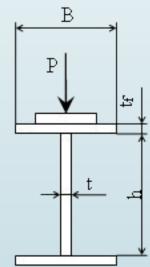
$$\sigma_e = \sqrt[2]{\sigma_X^2 - \sigma_X \cdot \sigma_y + \sigma_y^2 + 3 \cdot \tau_{XY}^2}$$

где

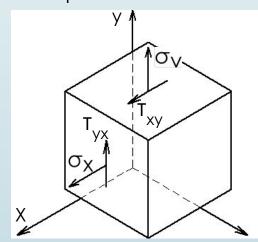
 σ_{x} – нормальные напряжения, действующие поперёк сварного шва;

 $\sigma_{_{\!\scriptscriptstyle V}}$ – нормальные напряжения, действующие вдоль сварного шва;


 T_{XV} – касательные напряжения в сварном шве.



Расчёт соединений со стыковыми швами (пример 1)


В качестве примера рассмотрим расчёт сварного шва ездовой балки крана в месте установки опорной подкладки рельса (см. рисунок). В этом случае в шве возникают нормальные напряжения от изгибающего момента М, местные нормальные напряжения от силы Р и касательные напряжения, вызванные перерезывающей силой Q. Эпюры этих напряжений показаны на рисунке.

Видно, что наихудшая комбинация компонент тензора напряжений возникает в верхней точке сварного шва в месте соединения стенки с поясом. Для этой точки мы и будем определять величину эквивалентных напряжений.

На рисунке ниже показано взаимное расположение компонент тензора напряжений в расчётной точке

Расчёт соединений со стыковыми швами (пример 1)

Шормальные напряжения в указанной точке, возникающие в результате действия изгибающего момента, и направленные параллельно оси балки определяются по формуле:

$$\sigma_X = \frac{h \cdot M}{J_7 \cdot 2}$$
 , где

 J_z – момент инерции расчётного сечения балки относительно горизонтальной оси; h – высота стенки балки.

Местные напряжения в указанной точке, возникающие в результате действия силы Р, и направленные поперёк сварного шва определяются по формуле:

$$\sigma_y = \frac{P}{I_{ef} \cdot f}$$
, где

t – толщина стенки балки;

 $I_{\rm ef}$ – условная длина распределения нагрузки, определяемая по формуле:

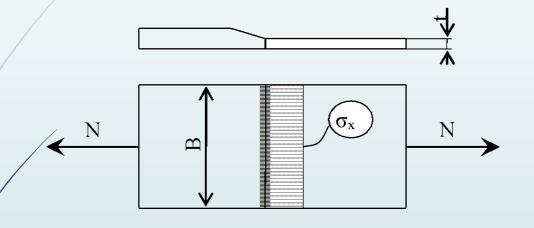
$$l_{ef} = b + 2 \cdot t_f$$
 , rae

b – размер опорного элемента в направлении вдоль стенки балки;

 $t_{\rm f}$ – толщина верхнего пояса балки.

Касательные напряжения в указанной точке определяются по формуле Журавского:

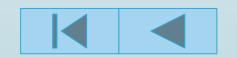
$$\tau_{XY} = \frac{Q \cdot S_Z^{OC}}{J_7 \cdot \dagger}$$
, где


 S_z^{oc} – статический момент отсечённой части сечения для расчётной точки, который определяется по формуле:

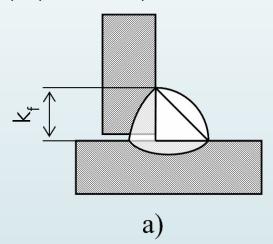
$$S_Z^{OC} = B \cdot t_f \cdot \left(\frac{h}{2} + \frac{t_f}{2}\right)$$

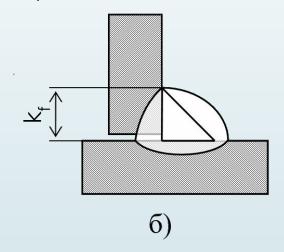
Расчёт соединений со стыковыми швами (пример 2)

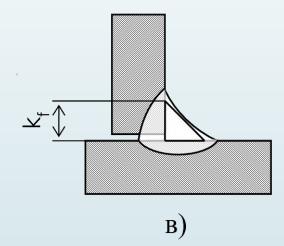
В случае работы сварного шва только на центральное растяжение или сжатие (см. рисунок) напряжённо-деформированное состояние является одноосным.


В этом случае компоненты σ_y и τ_{xy} равны нулю, а эквивалентное напряжение равно σ_x , которое можно определить по формуле:

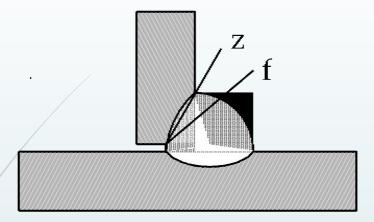
$$\sigma_e = \sigma_X = \frac{N}{t \cdot l_w}$$
, где


N – растягивающее или сжимающее усилие; t – наименьшая толщина соединяемых элементов;


 I_w – расчётная длина сварного шва, которая равна ширине сварного листа В в случае начала и окончания шва на выводных планках. При сварке без выводных планок расчётная длина шва определяется по формуле:


$$I_W = B - 2 \cdot t$$

Основным геометрическим параметром, характеризующим угловой шов является его катет k_f , который определяется как катет прямоугольного треугольника с углом при гипотенузе в 45° вписанного в сечение шва. Схемы определения катета для различных форм шва приведены на рисунке ниже.



На рисунке обозначено:

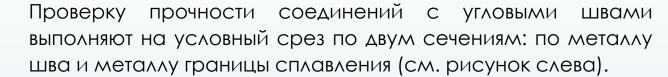
- а) симметричный выпуклый шов;
- б) несимметричный выпуклый шов;
- в) вогнутый шов.

Условия прочности запишем в виде:

для металла шва $t_f \leq y_n \cdot y_d \cdot y_{wf} \cdot R_{wf}$

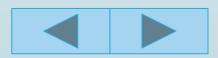
Для границы сплавления $t_z \le \gamma_n \cdot \gamma_d \cdot \gamma_{wz} \cdot R_{wz}$, где

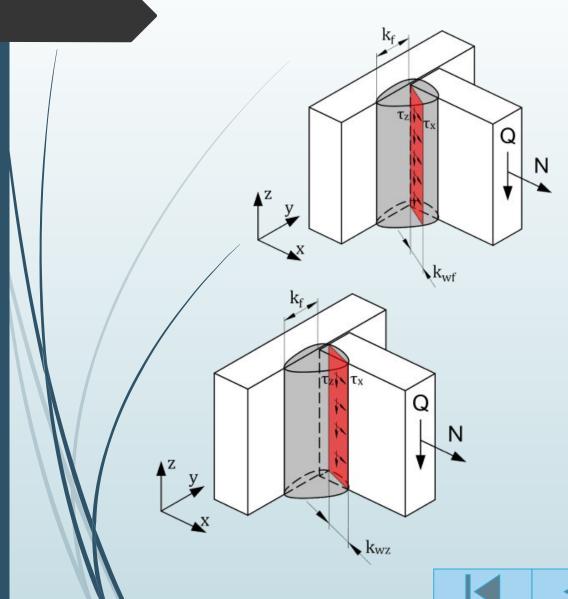
 $T_{f'}$, T_{7} – напряжения в расчётных сечениях по металлу шва и границы сплавления соответственно


 γ_{wf} , γ_{wz} – коэффициенты условий работы шва, равные 1 во всех случаях, кроме перегрузочных машин климатических исполнений ХЛ, для которых эти коэффициенты равны 0,85

 $R_{\rm wf}$ – <u>расчётное сопротивления металла шва</u>, определяемое в зависимости от применяемого сварочного материала

 $R_{_{w_{7}}}$ – расчётное сопротивление металла границы сплавления, определяемое по формуле

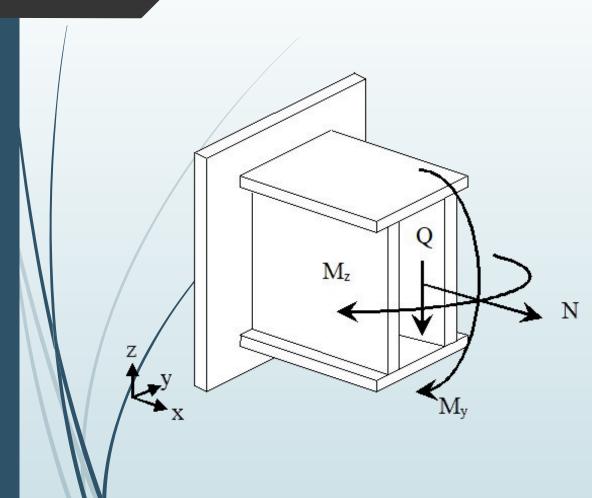

$$R_{WZ} = 0.45 \cdot R_{UD}$$
 , где


 R_{un} – <u>нормативное сопротивление материала</u> по пределу прочности, определяемое в зависимости от свариваемых сталей

На рисунке буквой f обозначено сечение по металлу шва, буквой z – сечение по границе сплавления.

Проверку прочности угловых швов следует выполнять для обоих сечений по касательным напряжениям.

При действии нескольких силовых факторов напряжения в расчётных сечениях определяются геометрическими суммами напряжений, вызываемых продольными и поперечными силами и моментом.


Так на рисунках слева в расчётных сечениях шва (на верхнем рисунке расчётное сечение проходит по металлу шва, на нижнем – по границе сплавления) действуют касательные напряжения по двум направлениям х и у. В этом случае суммарные напряжения среза по МШ и ГС вычисляются по формулам:

$$au_{fxy} = \sqrt{ au_{fx}^2 + au_{fy}^2}$$
 и $au_{wxy} = \sqrt{ au_{wx}^2 + au_{wy}^2}$

Поверхности среза на рисунках показаны красным. Ширина этих поверхностей k_{wf} и k_{wz} называется расчётным катетом, зависит от полноты шва и определяется по формулам:

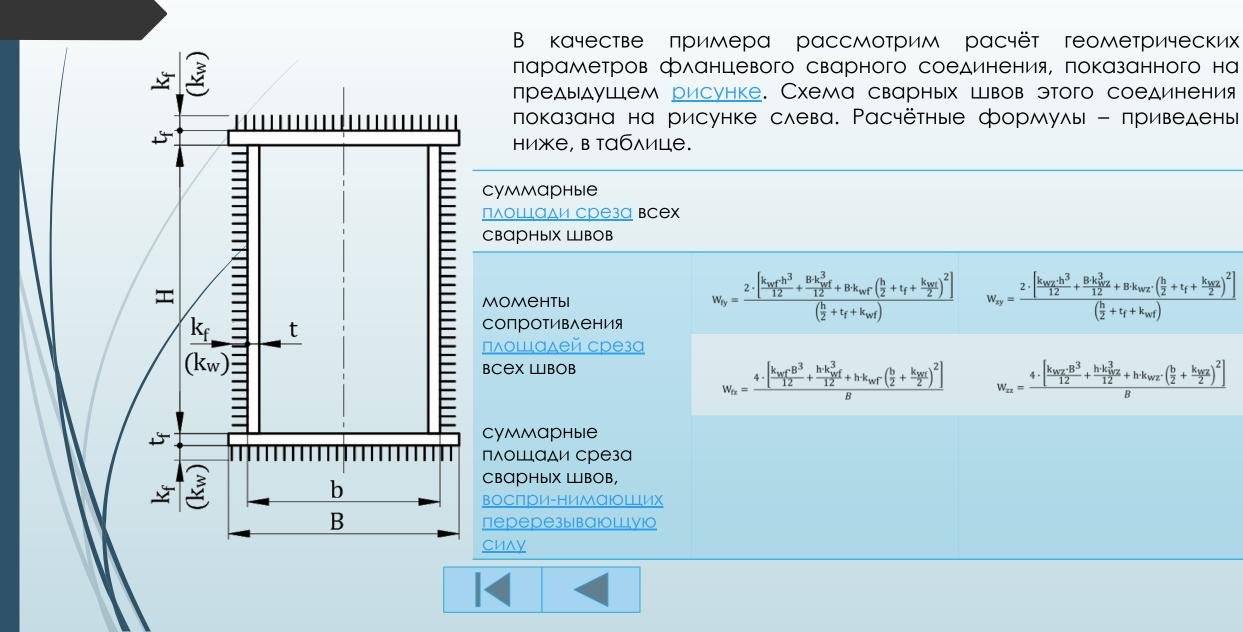
$$\mathbf{k}_{\mathrm{wf}} = \mathbf{\beta}_{\mathrm{f}} \cdot \mathbf{k}_{\mathrm{f}}$$
 и $\mathbf{k}_{\mathrm{wz}} = \mathbf{\beta}_{\mathrm{z}} \cdot \mathbf{k}_{\mathrm{f}}$, ГДС

 $\beta_{\rm f}$ и $\beta_{\rm z}$ - коэффициенты полноты шва, которые зависят от вида сварки, положения шва во время сварки, номинального катета шва.

При нагружении сварного соединения продольной и поперечной силами и моментами (см. рисунок слева) максимальные напряжения в сварных швах определяются по формулам:

$$au_f = \sqrt{\left(rac{N}{A_f} + rac{M_y}{W_{fy}} + rac{M_Z}{W_{fz}}
ight)^2} + \left(rac{Q}{A_{fq}}
ight)^2}$$
 - для металла шва, и

$$au_z = \sqrt{\left(rac{N}{A_Z} + rac{M_y}{W_{Zy}} + rac{M_Z}{W_{ZZ}}
ight)^2 + \left(rac{Q}{A_{Zq}}
ight)^2}$$
 - для границы сплавления


где: N, Q, $M_{\rm y}$, $M_{\rm z}$ – силовые факторы, действующие на сварной шов

 ${
m A}_{f'}$ ${
m A}_{Z}$ – суммарные площади среза всех сварных швов;

 W_{fy} , W_{fz} , W_{zy} , W_{zz} – моменты сопротивления площадей среза всех швов;

 A_{fq} , A_{zq} — суммарные площади среза сварных швов, воспринимающих перерезывающую силу Q. При определении площадей A_{fq} и A_{zq} следует учитывать, что перерезывающую силу Q не воспринимают швы, расположенные перпендикулярно направлению её действия.

Стандарты, применяемые про проектировании и конструировании сварных соединений

- 1. <u>ГОСТР ИСО 17659-2009</u> Сварка. Термины многоязычные для сварных соединений
- □ Ручная дуговая сварка:
- 1. ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры.
- 2. <u>ГОСТ 11534-75</u> Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.
- □ Сварка под флюсом:
- 1. <u>ГОСТ 8713-79</u> Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры.
- 2. ГОСТ 11533-75 Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.
- □ Дуговая сварка в защитном газе:
- 1. ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры.
- 2. ГОСТ 23518-79 Дуговая сварка в защитных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.
- Соединения сварные точечные:
- I. <u>ГОСТ 14776-79</u> Дуговая сварка. Соединения сварные точечные. Основные типы, конструктивные элементы и размеры.
- 2. <u>ГОСТ 28915-91</u> Сварка лазерная импульсная. Соединения сварные точечные. Основные типы, конструктивные элементы и размеры.

Значения коэффициента надёжности по назначению конструкции или её элемента (γ_n)

RIAA FIORDONA OLIIAG	Последствия повреждения			
Вид повреждения	значительные	незначительные		
Прочность (ограничение пластических деформаций)	0,95	1,00		
Устойчивость	0,90	0,95		
Сопротивление усталости	0,95	1,00		
Трещиностойкость	0,85	0,95		

Значения коэффициента надёжности математической модели сварного соединения (γ_d)

Tur u Moto Modellöta	Тип сварного	Напряжённо	ре состояние
Тип и метод расчёта	соединения	одноосное	многоосное
Проектный, аналитически ¹	стыковое (С)	0,80	0,70
Проектный, МКЭ ²	стыковое (С)	0,90	0,85
Проверочный, аналитически	стыковое (С)	0,90	0,80
Проверочный, МКЭ	стыковое (С)	0,95	0,90
Проектный, аналитически	тавровое (Т)	0,70	0,65
Проектный, МКЭ	тавровое (Т)	0,75	0,70
Проверочный, аналитически	тавровое (Т)	0,80	0,75
Проверочный, МКЭ	тавровое (Т)	0,90	0,85
Проектный, аналитически	нахлёсточное (Н)	0,70	0,70
Проектный, МКЭ	нахлёсточное (Н)	0,75	0,70
Проверочный, аналитически	нахлёсточное (Н)	0,85	0,80
Проверочный, МКЭ	нахлёсточное (Н)	0,95	0,90

Примечания:

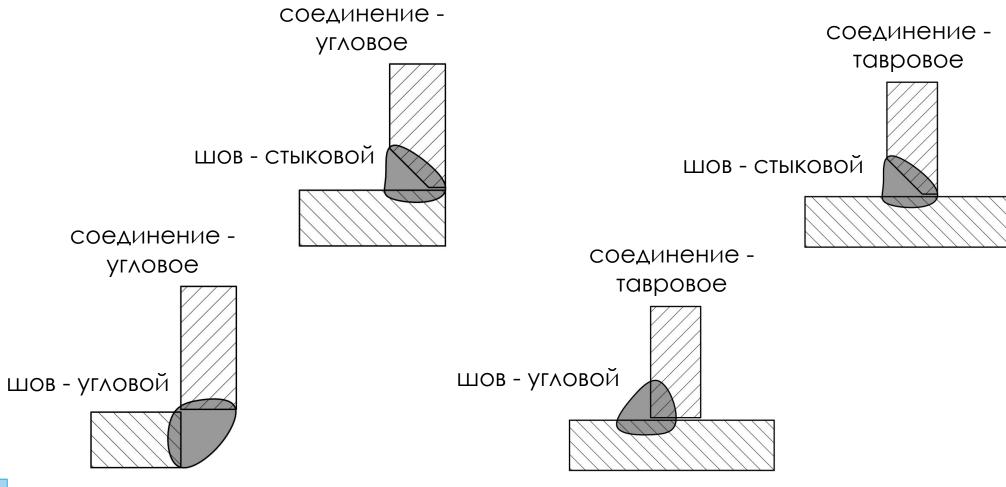
- 1 аналитический расчёт расчёт напряжений по формулам строительной механики;
- 2 МКЭ расчёт напряжений методом конечных элементов (с применением КЭ программ APM WinMachine, Ansys, Nastran и т.п.)

Нормативные и расчётные сопротивления сталей, применяемых для металлоконструкций перегрузочных машин

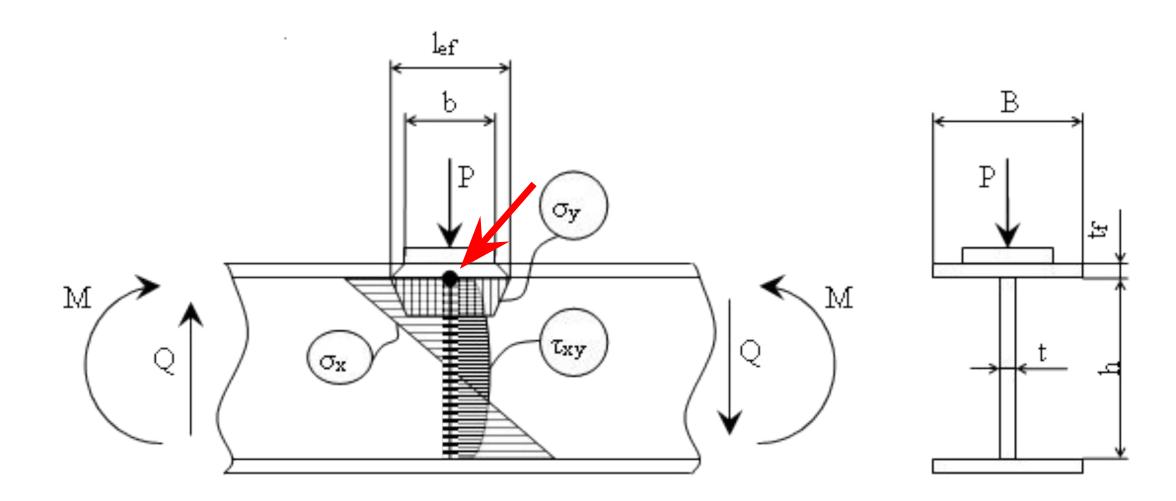
Марка стали	ГОСТ	Толщина, мм	•	ативное ение, МПа		ётное ение, МПа
		,, , , , ,	R_{yn}	R _{un}	R_y	$R_{_{_{ullet}}}$
ВСт3сп	14637-89	220	235	360	230	350
DCISCII	DC13C11 14637-67	2040	225	360	220	350
		210	345	490	335	480
09Г2С	19281-89 19282-73*	210 345 490 335 1020 325 470 315	460			
	17202 70	2040	305	460	300	450
		210	375	510	365	500
10ХСНД	19281-89 19282-73*	1020	355	490	345	480
	., 202 , 0	2040	335	480	325	470

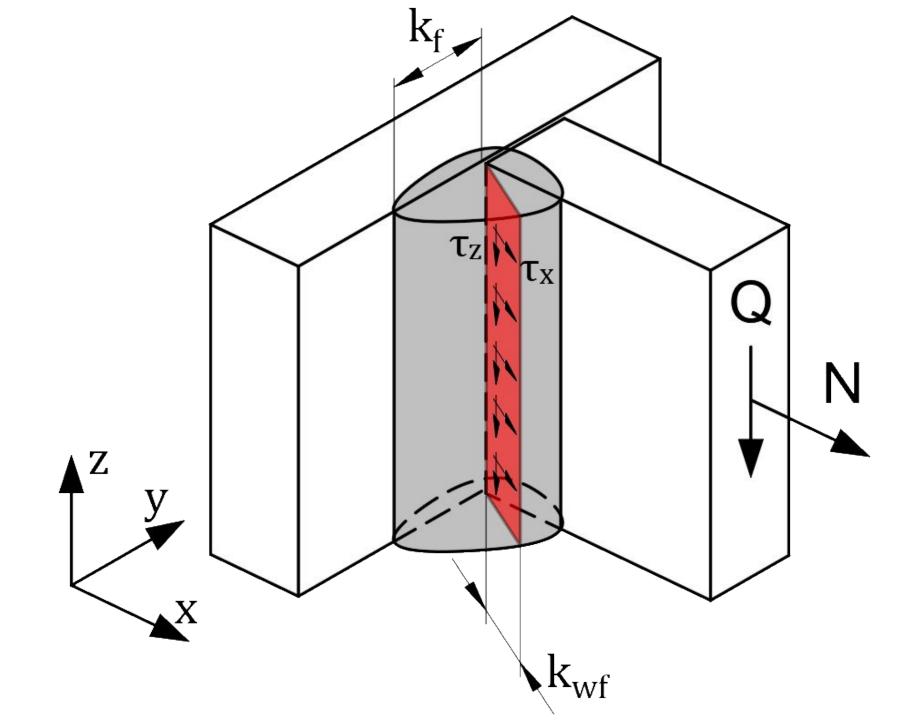
Нормативные и расчётные сопротивления металла швов сварных соединений с угловыми швами

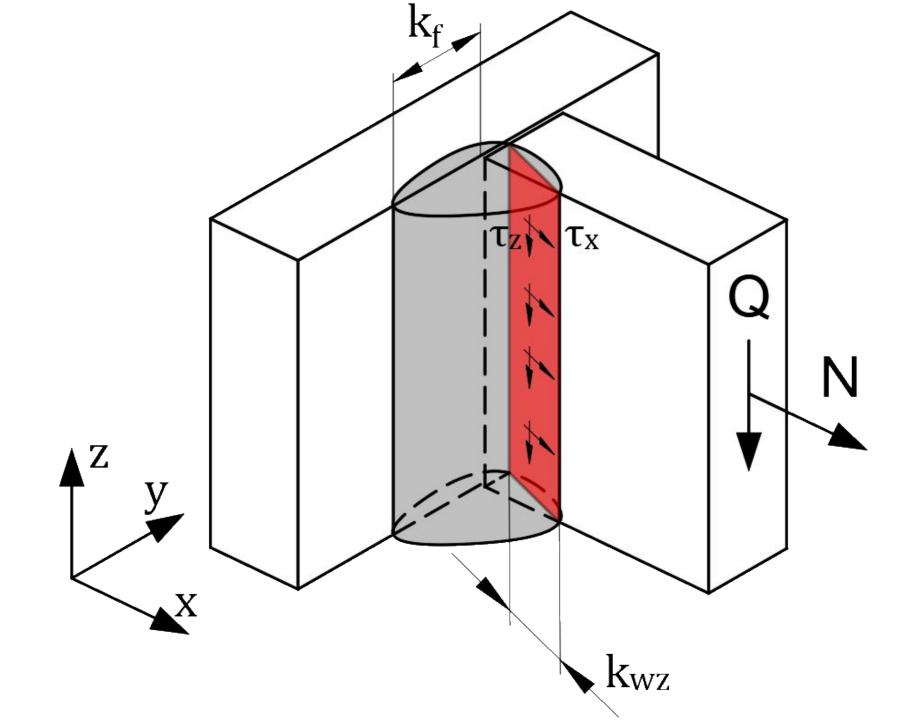
Сварочные	материалы		
Марка электрода по ГОСТ 9467-75*	Марка проволоки по ГОСТ 2246-70*	Нормативное сопротивление R _{wun} , МПа	Расчётное сопротивление R _{wf} , МПа [*]
Э42, Э42А	Св-08, Св-08А	410	180
Э46, Э46А	Св-08ГА	450	198
Э50, Э50А	Св-10ГА	490	216
Э60	Св-10НМА, Св-10Г2	590	240
Э70	Св-10ХГ2СМА, Св-08ХН2ГМЮ	685	279

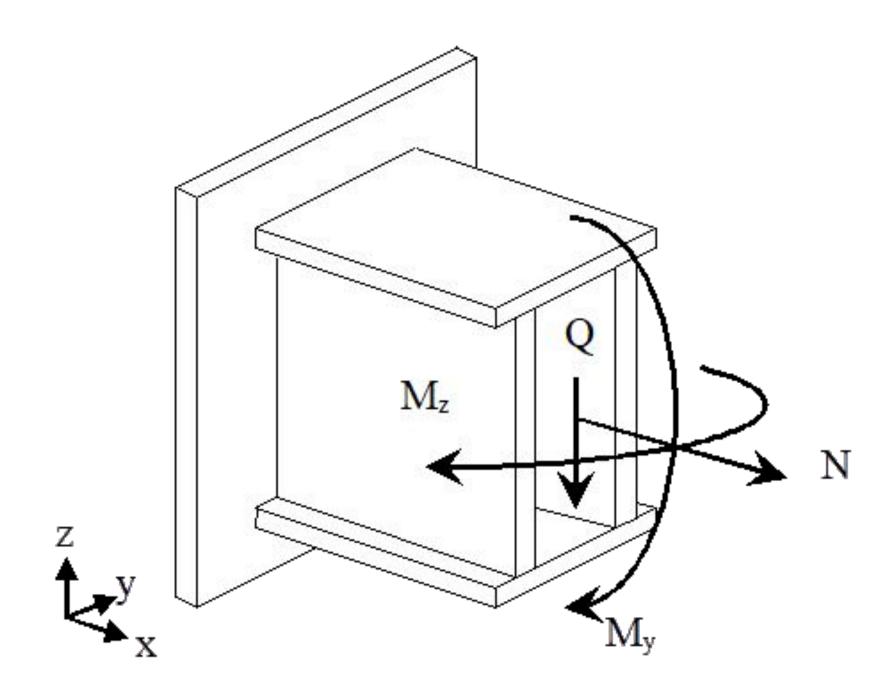

Коэффициенты полноты угловых сварных швов

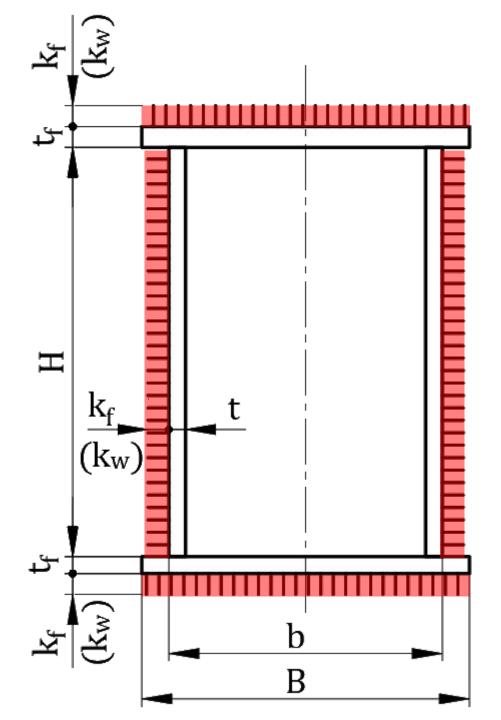
Вид сварки	Положение шва	Коэф- фициент		ения коэф мижэр хинь шво	•	•
		•	38	912	1416	>16
	В лодочку	β_{f}		1,1		0,7
Автоматическая при	в лодочку	β_{z}		1,15		1,0
диаметре сварочной проволоки d=35 мм	Нижнее	β_{f}	1,1	0,	,9	0,7
	Пижпее	β_{z}	1,15	1,0	05	1,0
Автоматическая и	P + O + OURO	β_{f}	0	,9	0,8	0,7
механизированная	В лодочку	β_{z}	1,	05	1	,0
при диаметре сварочной проволоки	Нижнее,	β_{f}	0,9	0,8	0	,7
d=1,42 mm	горизонтальное, вертикальное	β_{z}	1,05		1,0	
Ручная и	В лодочку, нижнее, горизонтальное,	β_{f}		0,	,7	
механизированная	вертикальное, потолочное	β_{z}		1.	,0	

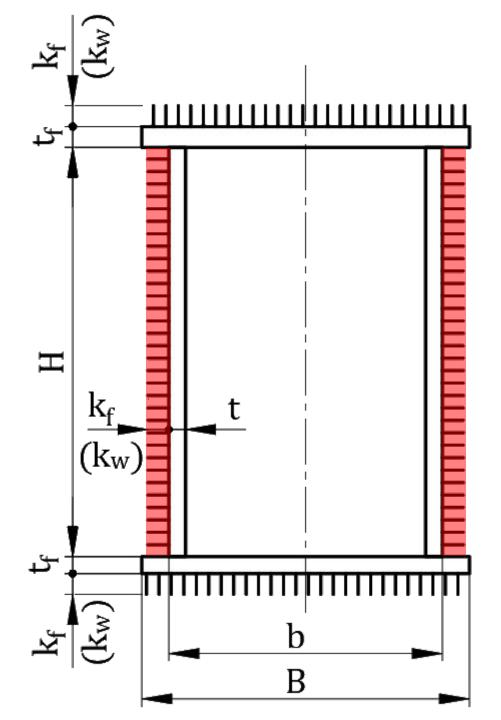



Следует понимать, что типы сварных соединений не всегда соответствуют типам сварных швов. Так, например, в угловом соединении может быть применён стыковой сварной шов.





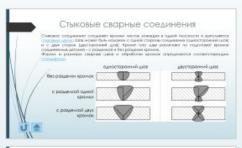




$$W_{fy} = \frac{2 \cdot \left[\frac{k_{wf} \cdot h^3}{12} + \frac{B \cdot k_{wf}^3}{12} + B \cdot k_{wf} \cdot \left(\frac{h}{2} + t_f + \frac{k_{wf}}{2} \right)^2 \right]}{\left(\frac{h}{2} + t_f + k_{wf} \right)}$$

$$W_{fz} = \frac{4 \cdot \left[\frac{k_{wf} \cdot B^3}{12} + \frac{h \cdot k_{wf}^3}{12} + h \cdot k_{wf} \cdot \left(\frac{b}{2} + \frac{k_{wf}}{2} \right)^2 \right]}{B}$$

$$W_{zy} = \frac{2 \cdot \left[\frac{k_{wz} \cdot h^3}{12} + \frac{B \cdot k_{wz}^3}{12} + B \cdot k_{wz} \cdot \left(\frac{h}{2} + t_f + \frac{k_{wz}}{2} \right)^2 \right]}{\left(\frac{h}{2} + t_f + k_{wf} \right)}$$


$$W_{zz} = \frac{4 \cdot \left[\frac{k_{wz} \cdot B^3}{12} + \frac{h \cdot k_{wz}^3}{12} + h \cdot k_{wz} \cdot \left(\frac{b}{2} + \frac{k_{wz}}{2} \right)^2 \right]}{B}$$

Содержание



び命

Значения коэффиционто надажности по назначению конструкции или её экемента /и. ! Стандарты, применяемые про проектировании и конструировании сварных соединений · Pyrest arroad cases: Description of the control of the cont · Committee de deservir Dec 2012 A primary response integrate to the Consumer response requirement in the control of the c

\$200 SERVICE ()	Последствия повреждения		
Вид повреждения	энсчительные	незначительные	
Прочность (ограничение пластических деформаций)	0.95	1,00	
Устойчивость	0.90	0.98	
Сопрогивление усталасти	0.95	1.00	
Трещиностойкость	0.85	0.95	

between parette	let displays	Напревінное составня		
Service of the service	COORDINATE.	- GANCOCHOR	ANGESCO 65	
Spoerteur, provinces	Children (C)	-0.00	0.76	
Epotechian, MCFF	Clinicator (C)	DPE	1006	
Проверочний перинячески	constant (C)	D.PE	0.80	
Spongorean MCD	roseane (C)	0.79	DM.	
Epinesiesul, resourcement	response (1)	0.78	0.61	
Spotenskii MC3	тирокое П	0.79	0.79	
Проверхный смоминески	rappes //	0.86	0.70	
FEDRESHAR NEO	rappeo (1)	0.09	0.00	
Провежний, вначинения	ematrosen (1)	0.76	0.76	
FDDREWS WO	HEMICOHON H	0.75	:0.79	
Троеврочник, онсиленноске	especial part of the second se	1000	0.000	
Total powers (INC)	wasterwood 14	TERM	DPE -	

Mapan criose	toor	Frontagreero.	Норманию сопровежения МПа		Госпётное гопровыжения, МП	
			E _e	Ea-	8,	1,
SCHOOL	14657-RV	2.30	295	340	230	360
SCHOOL 1400-07	2040	295	040	200	200	
1920 av		210	.345	490	385	-600
	19262-89	10.70	385	470	30.5	.000
	Control	20.40	305	.000	300	.600
		210	305	500	345	500
TERCHA.	19263-73F	1000	365	490	345	480
	1 Panel 1 P	2040	305	480	105	400

Нормативные и расчётные сопротивления сталей, применяемых для

Cidoorea	искрюн			
Majora Seresiptiva so TDC15467-79	Majora sponsoror- ye/IOC/ (SAS-70*	High-dries do colipic between E _m MFIG	Pacelinos colprisadores E _s Wild'	
340, 340A	GH08 GH08A	410	180	
200,2600	SHIPA	460	186	
566, 366A	Ch-WA	490	216	
340	CH 10 RM, CH 1973	240	540	
300	CHISPICAA CHOSHIZMO	MI	299	

lea cape	н Покоменных	uso Score	Значения колеффициентов при наришиния разволись сварие и калети калонік,			
			Aut	9.38	14.36	- 11
	Execution	- 6		9,1		67
Aerovan/words	E 200 C 200	Par.		1,15		38
processes 2-2-2	Less Heaven	16	1.0	- 1	OF .	62
	Heseen	(N)	118	- 3	.co	1,6
Amovor eventor o		- A	- 4	UI .	13.8	4.7
MONOW BURGOOM		0.65	- 1	as .	- 1	3 :
Specialisms for Section (Section)	roter However		-0.0	3.0	- 0	2
DECK THAT	FEDERAL PROPERTY.		1.08		1.0	
Pyrenter	B ANGENIA THE INSPERIOR WAS	906.		-	in.	
indicate positive	BI BODDWILLAND FORDADWO			- 1	10.	