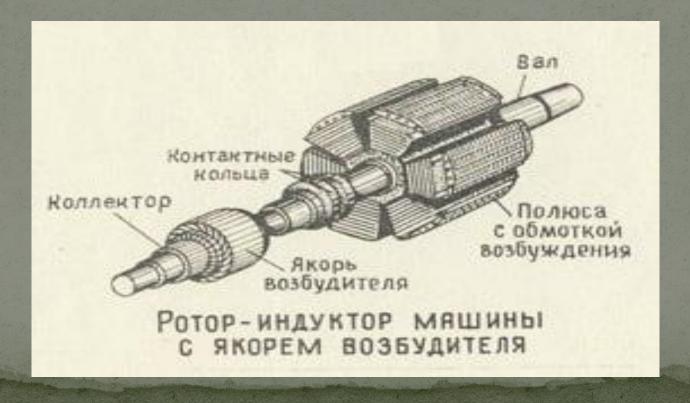

Синхронные машины.

Принцип действия. Способы возбуждения. Устройство турбо и гидро генераторов. Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

 $\overline{n_0 = n} = const$

Основными частями синхронной машины являются **якорь** и **индуктор**. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

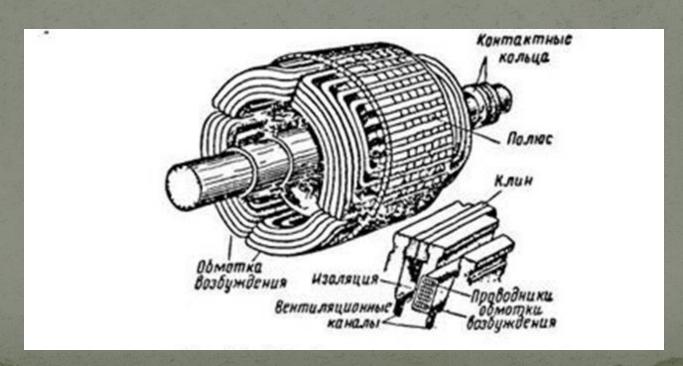
Якорь.


Якорь - представляет собой одну или несколько обмоток переменного тока.

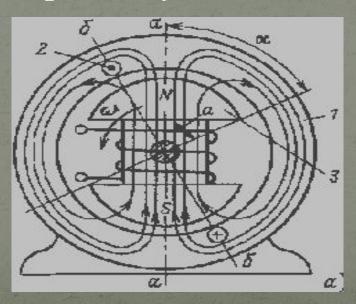
В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом возбуждается электромагнитный момент, приводящий к



Ротор.


Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную.

Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока.



При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб).

Принцип действия синхронных машин.

Рассмотрим принцип действия синхронного генератора. Если по его обмотке возбуждения пропустить постоянный ток, то этот ток создаст постоянное во времени и неподвижное относительно ротора магнитное поле с чередующейся полярностью. При вращении ротора его магнитное поле будет вращаться относительно неподвижной обмотки статора и наводить в ней переменную ЭДС.

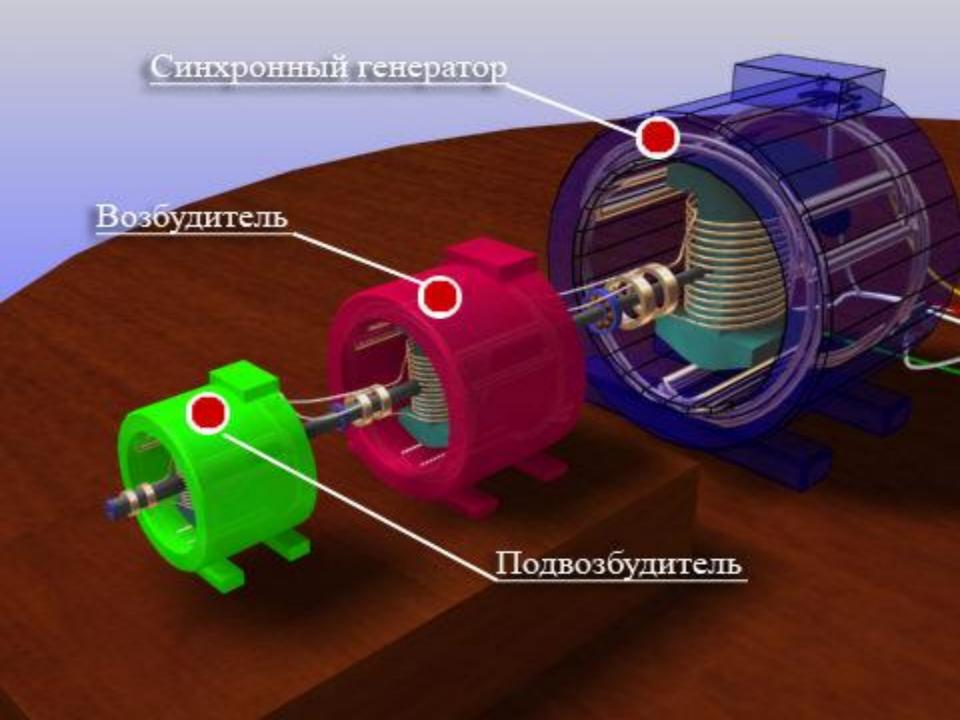
 Если на якоре уложена симметричная трёхфазная обмотка, то в этой обмотке индуцируется симметричная система ЭДС. При этом частота индуктируемых в обмотках ЭДС

 $f_1 = pn_2/60$

 n_2 -скорость ротора, р-число пар полюсов.

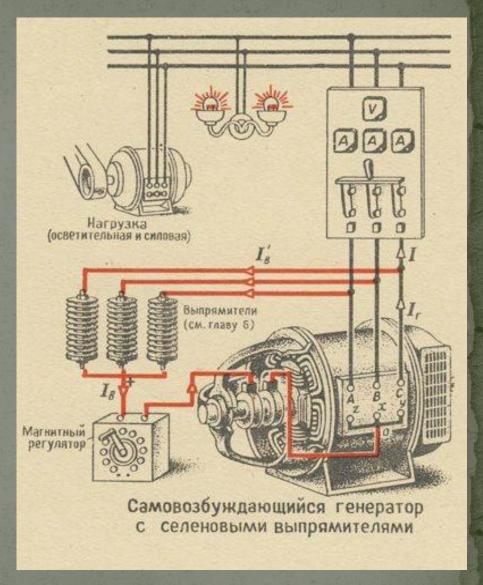
Если к трёхфазной обмотке якоря синхронного генератора подключить симметричное внешнее сопротивление, то по этой обмотке будет протекать симметричная система токов, создающих круговое вращающееся магнитное поле якоря.

Настота вращения этого поля относительно статора $n_2 = 60 f_1/p$

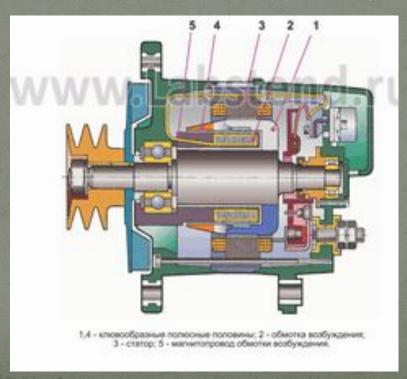

Подставив f_1 , получим $n_1 = n_2$. значит магнитные поля возбуждения и якоря неподвижны относительно друг друга и образуют результирующее магнитное поле машины.

При работе синхронной машины в режиме двигателя симметричная трёхфазная обмотка якоря присоединяется к трёхфазной сети. При этом образуется вращающееся магнитное поле с частотой вращения n1, которое, взаимодействуя с полем возбуждения, создаёт вращающий момент.

Способы возбуждения.


Большинство синхронных машин имеет электромагнитное возбуждение, при котором поток возбуждения создаётся обмоткой ротора, соединённой с источником постоянного тока. Система возбуждения должна обеспечивать достаточно быстрое, надёжное и устойчивое регулирование тока возбуждения в любых режимах работы. Кроме того, система возбуждения должна обеспечивать быстрое гашение магнитного поля, т.е. уменьшение тока возбуждения до нуля без значительных перенапряжений на обмотках.

В электромашинной системе в качестве источника возбуждения используют специальный генератор постоянного тока независимого возбуждения, называемый возбудителем. Возбудитель приводиться во вращение от вала синхронного генератора, а обмотка якоря возбудителя через контактные кольца соединена с обмоткой возбуждения синхронного генератора. Ток возбуждения синхронной машины регулируют с помощью реостатов, установленных в цепи возбуждения возбудителя.

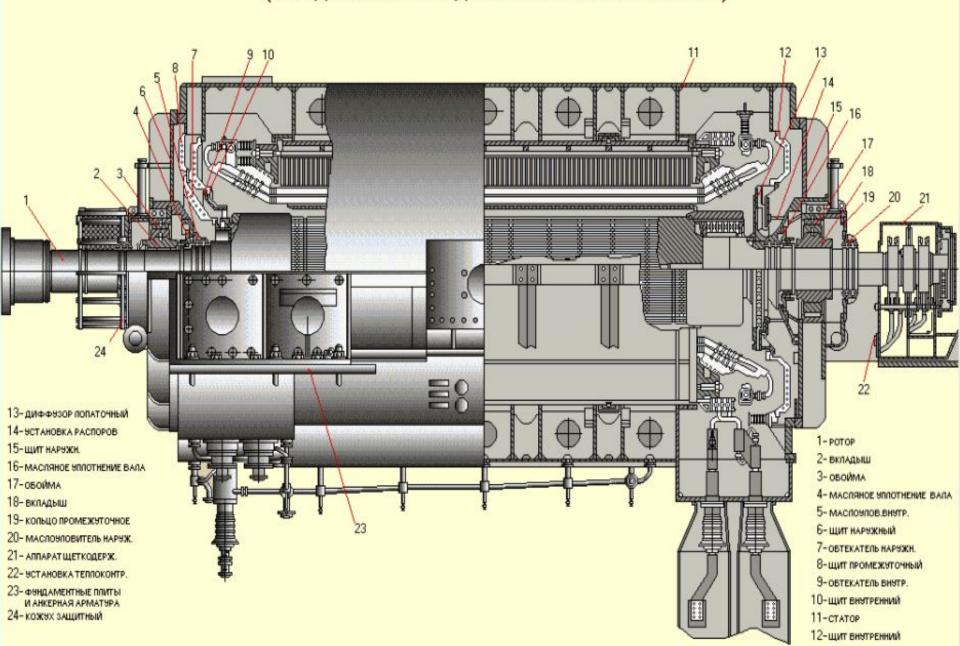

В настоящее время применяют вентильные системы возбуждения, которые могут рассчитываться на большие мощности и являются при этом более надёжным, чем электромашинные. Различают три вида вентильных систем возбуждения: система с самовозбуждением, независимая система возбуждения и бесщеточная система.

В вентильной системе с самовозбуждением обмотка возбуждения получает питание от управляемого статического выпрямителя. Подключённого к выводам обмотки якоря синхронного генератора. Начальное возбуждение синхронного генератора происходит за счёт остаточного намагничивания его полюсов.

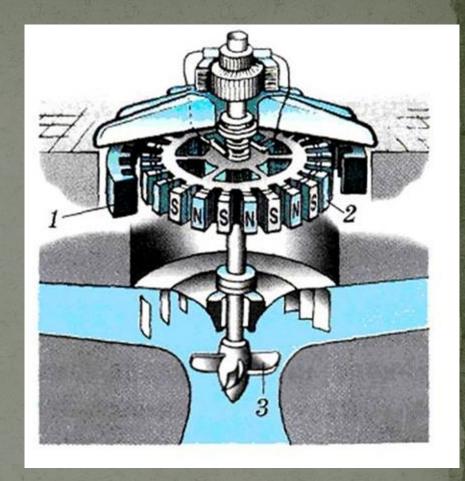
В вентильной независимой системе возбуждения обмотка возбуждения получает питание от якоря отдельного трёхфазного синхронного генератора, ротор которого соединён с валом главного генератора. Переменное напряжение возбудителя попадается на статический выпрямитель и далее через контактные кольца подводиться к обмотке возбуждения.

В случае бесщеточной системы возбудителем является синхронный генератор, имеющий обращённую конструкцию (якорь — на роторе, индуктор - на статоре). Обмотка якоря возбудителя соединяется с обмоткой возбуждения основного генератора через вращающийся выпрямитель, расположенный на валу генератора, что позволяет использования скользящего контакта.

Устройство турбо и гидро генераторов.

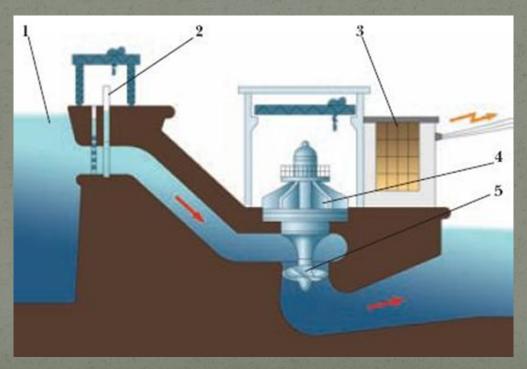

Турбогенераторы – быстроходные неявнополюсные машины (цилиндрический ротор) выполняются, как правило, с двумя полюсами, приводятся во вращение быстроходными паровыми или газовыми

турбинами.



Генератор состоит из двух ключевых компонентов статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Т**ЧРБОГЕНЕРАТОР ТГВ-200М** (С ВОДЯНЫМ ОХЛАЖДЕНИЕМ ОБМОТКИ СТАТОРА)



Гидрогенераторы – в большинстве случаев тихоходные явнополюсные машины, выполняемые с большим числом полюсов и вертикальным валом, приводятся во вращение гидротурбинами.

1 -статор, 2 -ротор, 3 -турбина.

Гидрогенераторы обычно имеют сравнительно малую частоту вращения (до 500 об/мин) и достаточно большой диаметр (до 20 м), чем в первую очередь определяется вертикальное исполнение большинства гидрогенераторов, так как при горизонтальном исполнении становится невозможным обеспечение необходимой механической прочности и жесткости элементов их конструкции.

1 – водохранилище, 2 – затвор, 3 – трансформаторная подстанция, 4 – гидрогенератор, 5 – турбина.