Харьковский национальный автомобильно-дорожный университет

Татаркина Ирина Сергеевна

РОЛЬ ПОВЕРХНОСТНОГО СЛОЯ В ДЕФОРМАЦИОННОМ ПОВЕДЕНИИ, ПОВЫШЕНИИ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ИЗДЕЛИЙ И ТЕХНОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ ДЛЯ ИХ ИЗГОТОВЛЕНИЯ

Специальность 05.02.01 – Материаловедение

Материалы диссертации на соискание ученой степени кандидата технических наук

Научный руководитель к.т.н., доц. Дощечкина И.В.

Харьков – 2015

Цель работы – изучение различных поверхностных воздействий на деформационное поведение изделий и повышение их эксплуатационных свойств, а также технологических характеристик материалов (заготовок) для их производства недорогими и эффективными методами.

Задачи исследования:

– проанализировать влияние механической (шлифование, механическое и электрохимическое полирование), химико-термической (цементация, азотирование), ионноплазменной обработок и эпиламирования на поведение и механические свойства стандартных образцов из конструкционных сталей при разных видах нагружения, а также определить зависимость их изменений от генезиса поверхностного модифицированного слоя;

¬ установить роль масштабного фактора и вклад поверхностного слоя в изменение механических характеристик изделия;

– изучить возможность использования ионной бомбардировки (ИБ) и эпиламирования (ЭП) для улучшения технологической пластичности листовых сталей и заготовок из них;

 определить характер структуры слоя, модифицированного ИБ, выявить наиболее важные факторы, ответственные за изменение свойств изделий, и предложить объяснение их влияния на поведение изделий при деформации;

– на основе проведенных исследований предложить эффективные методы повышения эксплуатационных свойств изделий и технологических характеристик материалов заготовок, которые получают холодной штамповкой, а также провести их промышленное опробование.

Объект исследования – процессы структурообразования в поверхностном слое, модифицированном различными методами.

Предмет исследования – улучшение эксплуатационных характеристик изделий и технологических свойств материалов для их изготовления путем изменения состояния поверхностного слоя.

Факторы, влияющие на свойства изделий

Исследуемые стали и методы их обработки

Стали	Методы обработки				
	Отжиг + шлифование, механическое и электролитическое полирование				
	Цементация + закалка + низкий отпуск				
	Отжиг + ионная бомбардировка				
	Отжиг + эпиламирование				
	Холоднокатаный прокат				
Сталь 40Х	Улучшение + азотирование				
	Улучшение + ионная бомбардировка				
Сталь 60Г	Закалка + средний отпуск + ионная бомбардировка				
	Отжиг + ионная бомбардировка				
Сталь 08кп	Отжиг + эпиламирование				
08кп, отжиг	- Сталь 20, отжиг 40X, 3 + В.О. 60Г, 3 + С.				
	Сталь 20 Сталь 20 Сталь 40Х Сталь 60Г Сталь 08кп				

Механическая обработка Профилограммы образцов (сталь 20,

отжиг

Шлифование Ra = 1,25 мкм

Механическое полирование Ra = 0,31 мкм

Электролитическое полирование Ra = 0,056 мкм

Диаграмма растяжения для образцов диаметром 5 мм из отожженной стали 20

1 – шлифование; 2 –полирование;

3 –электролитическое полирование

Результаты испытаний на растяжение, шероховатость поверхности и твердость образцов из отожженной стали 20 после различных видов обработки

					-		
Мех. обработка	σ _в ,	σ _{0.2} ,	S _k ,	δ,	Ψ,	Ra,	HV ₅
	МПа	МЙ́а	МП̈́а	%	%	МКМ	
Ø 5 мм							
Шлифование	455	255	925	33	64	1,25	122
Мех. полирование	475	250	965	34	65	0,31	133
Электрополирован	440	230	905	33	64	0,056	103
ие							
		Ø 10 м	м				
Шлифование	460	250	1100	32	64	1,25	122
Мех. полирование	465	250	1110	33	63	0,31	133
Электрополирован	450	240	1080	33	63	0,056	103
Ие							

Изломы разрывных образцов: а – шлифование, б – полирование, в – электролитическое полирование

а

б

В

6

Химико-термическая обработка. Цементация

Толщина слоя цементации, мм	σ _в , ΜΠа	σ _{0,2} , МПа	S _k , M∏a	δ, %	ψ. %	КСU, Дж/см 2
Без слоя (З+Н. О.)	560	480	1140	19	46	52
0,5	840	600	840	-	-	29
1,0	785	-	785	-	-	14
1,5	640	-	640	-	-	9
2,0	590	-	590	-	-	5
Снятый слой	565	485	1150	19	47	52

Диаграмма растяжения образцов Ø 10 мм из стали 20: 1 – З+Н.О.; 2 –слой цементации 0,5 мм; 3 –1,0 мм; 4 – 1,5 мм; 5 – 2,0 мм; 6 – механически снятый слой Результаты испытаний на растяжение образцов из стали 20 после цементации по различным режимам, закалки и низкого отпуска

Образцы после испытаний на растяжение: 1 – без цементации (3 + Н.О.); 2 – снятый слой; 3 – слой 0,5мм; 4 – 1,0 мм; 5 – 1,5 мм; 6 - 2,0 мм

Изломы разрывных образцов: а – без слоя, б – слой 0,5 мм, в –1 мм, г –1,5 мм, д –2мм (×2,5)

Д

Зависимость временного сопротивления σ_в и ударной вязкости КСU от толщины слоя цементации h

Изломы ударных образцов: а, б – нет слоя; в, г слой – 2,0 мм

Химико-термическая обработка. Азотирование

Диаграммы растяжения образцов Ø 5 мм из стали 40Х: 1 – 3+ВО; 2 – слой азотирования 0,08 мм; 3 – 0,25 мм; 4 –0,35 мм

Результаты испытаний на растяжение образцов из стали 40X после азотирования по различным режимам

Толщина слоя азотирования,	σ _в , МПа	σ _{0,2} , МПа	s _k , МПа	δ, %	ψ. %
MM		ØF			
		۶			
Без слоя (3 +	705	425	1020	10	50
BO)	705	455		19	52
0,08	790	465	915	19	49
0,25	535	-	535	-	-
0,35	475	-	475	-	-
Снятый слой	720	430	1020	19	52
		Ø10) мм		
Без слоя (3 +	705	120	1380	20	53
BO)	705	430		20	52
0,08	770	455	1290	20	48
0,25	580	_	580	_	_
0,35	545	_	545	_	_
Снатый спой	715	420	1380	21	E1

Внешний вид образцов после испытаний на разрыв: 1 – исходный; 2 – снятый слой; 3 – слой 0,08мм; 4 – 0,25мм, 5 –0,35мм

Микротрещины на поверхности образца с азотированным слоем 0,08 мм (× 2)

Изломы образцов: а– исходный; б– слой 0,08 мм; в– 0,25 мм, г– 0,35 мм (×2,5)

Обработка низкоэнергетическими

ионами Ті

Кривые растяжения цилиндрических образцов Ø 5 мм из стали 20: 1 – отжиг; 2– отжиг + ИБ

Состояние	σ _в , МПа	σ ₀₂ , МПа	s _к , МПа	δ, %	ψ, %		
Ø 5 мм							
Отжиг	445	230	910	31	58		
Отжиг + ИБ	515	290	1010	31	60		
Отжиг + ИБ + Шлиф.	440	230	900	30	60		
Ø 10 мм							
Отжиг	440	230	1050	30	60		
Отжиг + ИБ	510	290	1150	31	62		
Отжиг + ИБ + Шлиф.	440	235	1000	30	61		

Результаты испытаний на растяжение цилиндрических образцов из стали 20 после разной обработки

Влияние ИБ на циклическую долговечность сталей

Материал и	Величина	Количество циклов	Результат
обработка	напряжения при	до разрушения	испытаний
	испытаниях,		
	МПа		
Сталь 40X (3+BO)	380	297600	Разрушился
Сталь 40Х	380	100000	He
(3+ВО+ИБ)			разрушился
Сталь 40Х	430	453840	Разрушился
(3+ВО+ИБ)			
Сталь 60Г (3+СО)	380	937440	Разрушился
Сталь 60Г	550	1116000	He
(3+СО+ИБ)			разрушился

Обработка низкоэнергетическими ионами Ті

Диаграммы растяжения и результаты испытаний плоских образцов из отожжённой стали 20 до (1) и после (2) ионной бомбардировки (ИБ)

Состояние	σ _в , МПа	σ ₀₂ , МПа	s _k , M∏a	δ, %	δ _p , %
Исходное	390	220	690	13	11
Исходное + ИБ	425	250	760	23	20

Внешний вид образцов из отожжённой стали 20 до (1) и после (2) ИБ

Эпиламирование

Диаграммы растяжения для образцов Ø5 мм из отожжённой стали 20 до (1) и после (2) эпиламирования

Внешний вид цилиндрических образцов Ø5 мм до (а, в) и после (б, г) эпиламирования

Состояние	σ _в ,	σ _{0,2} ,	S _k ,	δ, %	ψ, %		
	МПа	МПа	МПа				
Ø 5 мм							
Отжиг	455	230	920	31	66		
Эпиламирование	460	195	920	32	67		
Ø 10 мм							
Отжиг	455	245	925	31	64		
Эпиламирование	460	240	925	31	65		

Диаграммы растяжения для плоских образцов из отожжённой стали 20 до (1) и после (2) эпиламирования

Состояние	σ _в ,	σ _{0,2} ,	S _k ,	δ,	ψ,
	МПа	МПа	МПа	%	%
Отжиг	375	290	480	25	21
Эпиламирование	360	265	540	36	33

Результаты испытаний на растяжение и внешний вид плоских образцов из стали 20 до (1) и после (2) эпиламирования

Профилограммы и поверхность образцов из стали отожженной стали 20: а – шлифование; б - эпиламирование

а

a, × 3000

Микроструктура поверхностного слоя стали 20 до (а, в) и после ИБ (б, г)

a, × 1000

в, × 8000 (зерно 40 мкм)

б, × 1000

г, × 8000 (субзерно 500 нм)

Измерение нанотвердости Распределение нанотвердости по глубине после ИБ (сталь 20, отжиг)

Глубина проникновения, нм

Микрорентгеноспектральный анализ

а

Дифрактограммы и химический анализ образцов из стали 20: а – отжиг; б – ИБ

б

Атомно-силовая микроскопия

Полирование

Полирование + ИБ

22

Ofnoform	Параметр шероховатости						
Обработка	Sy, НМ	Sz, HM	Sa, нм	Sq,нм	Ra, мкм		
Полирование	144	73	15	18	0,12		
Полирование+И Б	249	124	21	29	0,18		

Результаты испытаний стали 08кп (толщина 0,5 мм) на выдавливание по методу Эриксена после ИБ

Состояние	Глубина лунки	Способность к вытяжке
Исходное	9,05	ВГ
ИБ (одна сторона)	10,7	BOCB
ИБ (с двух сторон)	10,9	BOCB

а Внешний вид образцов после испытаний: а – исходный; б – после ИБ 23 Результаты испытаний стали 08кп (толщина 0,5 мм) на выдавливание по методу Эриксена после эпиламирования

Состояние	Гл <mark>убина лунки, м</mark> м	Способность к
		вытяжке
Отжиг	<mark>9, 05</mark>	СВ
Э <mark>пиламировани</mark> е	11, 7 – 11, 85	BOCB

Образцы после испытаний на выдавливание по методу Эриксена: а – сталь 20 (отжиг); б – сталь 20 после эпиламирования

Практическое значение полученных результатов

опробования результатов диссертационной работы Татаркиной Ирины Сергеевны, представленной на соискание ученой степени кандидата технических наук по специальности 05.02.01 – Материаловедение

Комиссия в составе:

г. Харьков

- главного технолога Гожи И.Н.,

 заместителя начальника Центральной лаборатории предприятия, д. т. н., проф. Лобанова В.К.,

- начальника лаборатории механических испытаний ЦЗЛ Вервейко Н.К.

рассмотрела результаты испытаний образцов по диссертационной работе аспиранта Харьковского национального автомобильно-дорожного университета И.С. Татаркиной на тему «Роль поверхностного слоя в деформационном поведении и повышении технологических и эксплуатационных свойств изделий». Были апробированы рекомендации автора по повышению технологической пластичности холоднокатаной тонколистовой стали применением бомбардировки поверхности листа низкоэнергетическими ионами Ті. Кроме того, проверены содержащиеся в работе рекомендации о возможности использования с этой целью эпиламирования.

Испытанию на способность к вытяжке подвергали образцы из стали 08кп толщиной 0,5 мм по ГОСТ 9045-93 (ИСО 3574-86). Категорию вытяжки оценивали по глубине лунки при испытании на вдавливание по методу Эриксена.

Исследовали образцы стали в отожжениюм состоянии и после бомбардировки низкоэнергетическими ионами Ті в течение 15 мин. при токе дуги 95 А, напряжении 1,1 кВ, а также обработки эпиламом марки СФК-05.

Полученные результаты представлены в таблице.

Состояние	Глубина лунки, мм	Категория вытяжки
Исходное	9,35	Сложная вытяжка (СВ)
Ионная бомбардировка	10,9	весьма особо сложная вытяжка (ВОСВ)
Эпиламирование	11,7-11,85	весьма особо сложная вытяжка (ВОСВ)

1. Впервые установлено, что характер и величина эффекта изменения свойств при поверхностном воздействии зависят, в основном, от трех факторов – генезиса поверхностного слоя, его толщины по отношению к площади сечения и соотношения площади поверхности S к объему изделия V.

2. Впервые прямыми экспериментами с использованием сканирующей электронной, атомно-силовой микроскопии и измерения нанотвердости установлено, что при ИБ низкоэнергетическими ионами на поверхности изделия реализуются два процесса – залечивание дефектов и формирование модифицированного слоя толщиной менее 1 мкм, сочетающего субмикрокристаллические и нанокристаллические элементы структуры. Именно этот слой определяет поведение изделия при деформации и его свойства, тогда как механические характеристики сердцевины после ИБ не изменяются.

3. Изделие после такой обработки следует рассматривать как такое, которое изготовлено из композиционного материала – массивной сердцевины и поверхностного слоя толщиной меньше 1 мкм, который обладает большей деформационной способностью. При деформировании такого тела как одного целого для снижения напряжений, которые возникают в связи с различной деформацией, необходима аккомодация на границе раздела слоев, которая происходит путем проскальзывания субмикроструктурных элементов и ротационных мод.

4. Впервые показано, что после ИБ при S/V меньше единицы превалирует эффект упрочнения при сохранении пластичности. Если S/V больше единицы (плоские тонкое образцы), проявляется эффект пластификации при повышенной прочности. Зависимость эффекта от S/V ранее не была известна. Возможность такого существенного увеличения пластичности после ИБ открыта впервые.

5. Впервые установлено, что ЭП, залечивая поверхностные дефекты, значительно повышает пластичность тонколистовых сталей, но при этом наблюдается небольшое снижение границы текучести. Сопоставление этих данных с данными о влиянии ИБ свидетельствует, что одно залечивание дефектов не приводит к упрочнению.

Выводы:

- Установлено, что характер и величина изменения свойств при поверхностном воздействии зависят, в основном, от трех главных факторов – генезиса поверхностного слоя, его толщины и соотношения площади поверхности к объему изделия (А).
- Прямыми экспериментами с использованием сканирующей электронной, атомно-силовой микроскопии и измерения нанотвердости установлено, что при ИБ низкоэнергетическими ионами на поверхности изделия кроме залечивания дефектов формируется модифицированный слой толщиной менее 1 мкм, сочетающий субмикрокристаллические и нанокристаллические элементы структуры, который имеет более высокую нанотвердость (~ 12 ГПа при исходной ~ 2,3 ГПа). Высота рельефа этого слоя соответствует нанодиапазону (~ 20 нм). Именно этот слой определяет поведение тела при деформации и возрастании прочности, тогда как механические характеристики сердцевины изделия остаются неизменными. Эффект полностью снимается после удаления слоя, созданного ИБ.
- Изделие после такой обработки следует рассматривать как изготовленное из композиционного материала массивной сердцевины и поверхностного слоя толщиной не более 1 мкм, который обладает лучшей деформационной способностью за счет субзеренного проскальзывания и ротационных мод. При A<1 сердцевина затрудняет деформацию поверхностного слоя, и после ІБ превалирует эффект упрочнения при сохранении пластичности. Если A>1 (тонкие плоские образцы, в частности тонколистовой прокат), сильнее проявляется эффект пластификации при повышенной пластичности.
- Обе обработки– ИБ и ЭП– залечивают поверхностные дефекты, что способствует существенному (в несколько раз) повышению циклической долговечности, хотя после ЭП предел текучести несколько (на 9 %) снижается. Это подтверждает, что поверхностные впадины, трещины и царапины при циклическом напряжении играют большую роль в формировании источника разрушения, чем при статических испытаниях на растяжение.
- Вследствие залечивания поверхностных дефектов и ИБ, и ЭП повышают пластические свойства тонколистовых сталей (δ на 76 и 44 %, ψ на 160 и 57 % соответственно). При этом после ИБ упрочнение сохраняется (σв растет на 9 %, σ0,2 – на 14% по сравнению с состоянием без ИБ), тога как ЭП сопровождается незначительным снижением предела текучести.
- Пластифицирование листовой стали за счет ИБ и ЭП предложено для повышения технологической пластичности тонколистовой холоднокатаной стали, предназначенной для холодной штамповки. Методы опробованы на ГП «Завод им. Малышева» и показали возможность достижения в стали 08кп способности к вытяжке выше ВОСВ. Полученный результат позволяет рекомендовать эти методы для применения как на предприятиях, которые используют листовую продукцию, так и на заводах, которые выпускают тонколистовые стали. 27