Дисциплина «Применение горючего на авиационной технике и при проведении авиационных работ»

Тема № 2. Топлива, применяемые на воздушных судах и наземной технике при проведении авиационных работ

Занятие №5. Применение топлив для реактивных двигателей

СОДЕРЖАНИЕ ЛЕКЦИИ

Введение

Учебные вопросы:

- 1. Условия применения и требования к качеству.
- 2. Марки, состав и применение для реактивных двигателей.
- 3. Основные эксплуатационные свойства топлив для реактивных двигателей.

Заключение

Литература

Основная:

- 1. Применение горючего на авиационной технике и при проведении авиационных работ. Жидкие нефтяные топлива. Учебное пособие / составители М.А. Егоров, А.В. Калякин, Р.Р. Файзуллин Ульяновск: УВАУ ГА (И), 2014. 168 с.
- 2. Химмотология. Учебник / А.А. Гуреев, И.Г. Фукс, В.Л. Лашхи М.: ХИМИЯ, 1986. 366

Дополнительная:

- 1. Применение горючего на военной технике: учебник/Е.И.Гулин, А.Ф.Горенков, С.Н.Зайцев, и др. М.: ВОЕННОЕ ИЗДАНИЕ, 1989. 432 с.
- 2. Химмотология горючего. Учебное пособие: в 2 ч.Ч. 1 / А.Н.Литвиненко, Н.В.Логинов, Н.В. Волков, Р.Р.Файзуллин, А.В. Калякин и др.; Под ред. А.Н.Литвиненко. Ульяновск: УВВТУ, 2005. С. 1-262

1.	Условия применения и требования к качеству.

Условия применения топлив для реактивных двигателей

Работа АГТД основывается на создании внутри двигателя мощного газовоздушного потока, способного вращать с высокими скоростями турбину двигателя и создать на выходе из него реактивную тягу, обеспечивающую полет самолетов с высокими скоростями.

Широкое распространение **АГТД** объясняется следующими преимуществами их перед поршневыми двигателями:

- высокий коэффициент полезного действия;
- повышение силы тяги и тяговой мощности двигателя с увеличением скорости полета, что позволяет осуществить сверхзвуковые скорости полета летательных аппаратов;
- простота конструкции отсутствие сложного и тяжелого кривошипношатунного механизма;
- сравнительно небольшая удельная масса двигателя по отношению к общей полетной массе летательного аппарата;
- возможность применения более дешевых групп топлива с меньшей пожароопасностью по сравнению с высокооктановыми авиационными бензинами.

Из существующих типов АГТД наибольшее распространение получили турбореактивные и турбовинтовые двигатели (ТРД и ТВД).

Рабочий процесс авиационного газотурбинного двигателя

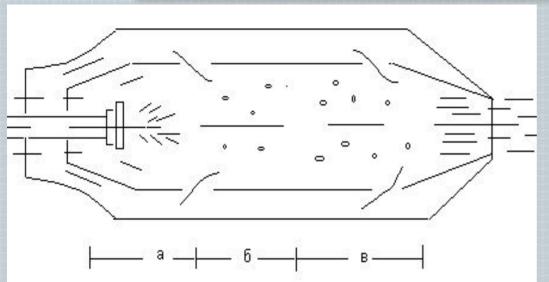


Схема развития процесса горения в ТРД: а – зона образования горючей смеси; б – зона горения; в – зона смешения

В камере сгорания условно можно выделить три зоны. В первой происходит распыление, испарение, смешение и образование горючей смеси с α = 1.

Во второй осуществляется воспламенение и горение Образовавшиеся газы имеют высокую температуру и не могут направляться непосредственно на лопатки турбин.

В третьей зоне продукты сгорания смешиваются с воздухом и поступают далее на направляющий аппарат с температурой до 1270°С, обеспечивающей надежность работы турбины.

Особенности рабочего процесса АГТД:

- 1.Испарение капель и перемешивание паров топлива с воздухом происходит в потоке, движущемся со скоростью 40-60 м/с в связи с чем на процесс смесеобразования в АГТД отводится 0,003...0,005 с.
- 2. Топливо, впрыскиваемое по давлением 4-6 Мпа в камеру сгорания, попадает в поток сжатого воздуха (P_в = 0,66 0,8 МПа; t = 200-400°C). Впрыск осуществляется центробежными форсунками при этом обеспечивается топливная смесь, близкая стехиометрическому составу.
- 3. Горение в АГТД происходит как непрерывный процесс в быстродвижущемся турбулентном газовом потоке со скоростью 40-60 м/с.
- 4. Сгорание происходит без четкого разделения на стадии испарения, смесеобразования и воспламенения, осуществляется с большой скоростью и с большим тепловыделением.
- 5. Нарушение равенства скорости распространения фронта пламени и скорости движения топливовоздушного потока может привести к срыву пламени.
- 6. Процесс сгорания топлива в АГТД осуществляется при большом суммарном коэффициенте избытка воздуха (при α = 4,5).

Требования к качеству топлив для реактивных двигателей:

- -хорошая испаряемость для обеспечения полноты сгорания;
- -высокая полнота и теплота сгорания, предопределяющие дальность полета самолета;
- -хорошие прокачиваемость и низкотемпературные свойства для обеспечения подачи топлива в камеру сгорания;
- -низкая склонность к образованию отложений, характеризуемая высокой химической и термоокислительной стабильностью;
- -хорошая совместимость с материалами, низкие противокоррозионные свойства по отношению к металлам и отсутствие воздействия на резиновые технические изделия;
- -хорошие противоизносные свойства, обусловливающие небольшое изнашивание деталей топливной аппаратуры;
- оптимальные антистатические свойства, препятствующие накоплению зарядов статического электричества, что обеспечивает пожаробезопасность при заправке летательных аппаратов.

2. Марки, состав и применение для реактивных двигателей.

Марки топлив для реактивных двигателей

1. **ГОСТ 10227-86** Топлива для реактивных двигателей. Технические условия.

(С 1.01.2017 г. ГОСТ 10227-2013).

Для реактивных двигателей авиации с дозвуковой скоростью предусмотрен выпуск топлив **T-1**, **TC-1** и **T-2**, а также топлива **PT**, которое, кроме того, используется для сверхзвуковых самолетов с ограниченной продолжительностью полета.

- 2. **ГОСТ 12308-2013** Топлива термостабильные **T-6** и **T-8B** для реактивных двигателей. Технические условия. Топлива предназначены для сверхзвуковой авиации.
- 3. ГОСТ Р 52050-2006, ГОСТ 32595-2013 Топливо авиационное для газотурбинных двигателей Джет А-1 (JET A-1). Технические условия.

Топлива для дозвуковой авиации

Топливо **Т-1** представляет собой прямогонную керосиновую фракцию из малосернистых нефтей, выкипающую при температуре от **130 до 280°C** (t°_{н.п.} не выше 150°C). По термической стабильности оно не отвечает современным требованиям и уступает другим маркам авиакеросинов. Максимальная температура осадкообразования для топлива Т-1 составляет 160°C. В настоящее время производство топлива Т-1 очень ограничено.

Топливо **TC-1** - представляет собой лигроино-керосиновую фракцию прямой переработки сернистых нефтей. Практически TC-1 выкипает в пределах **140-250°C** (t°_{н.п.} не выше150°C). Конец кипения топлива TC-1 ограничивается не более 250°C, чтобы понизить температуру начала кристаллизации (не выше **-60°C**) и уменьшить содержание сернистых соединений, смолистых веществ и нестабильных углеводородов.

Топлива для дозвуковой авиации

Топливо Т-2 — продукт прямой перегонки широкого фракционного состава, выкипающий при температуре от 60 до 280°С, в основном, вырабатываемое из сернистых нефтей. Оно представляет собой смесь бензино-лигроино-керосиновых фракций. За счет вовлечения в состав топлив прямогонных бензиновых фракций позволяет увеличить выход топлива из нефти в 1,5-2 раза по сравнению с ТС-1. В настоящее время Т-2 не выпускается, но предназначено для

В настоящее время Т-2 не выпускается, но предназначено для массового выпуска в особый период.

Топливо Джет A-1 (JET A-1) проходит гидроочистку, в его составе имеются антистатическая присадка СТАДИС 450 (STADIS 450) не более 3 мг/дм³ и стабилизирующая (антиокислительная) присадки, содержащие 2,6-дитретбутилфенола, 2,6-дитретбутил-4-метилфенола, 2,4-диметил-6-третбутилфенола, а также их смеси. При производстве топлива в него может быть введено от 15 до 23 мг/дм³ противоизносной присадки Хайтек 580 (Hitec 580). Количество введенных присадок не должно превышать 24 мг/дм³ активных компонентов (без растворителя).

Топливо для дозвуковой и сверхзвуковой авиации

Топливо РТ представляет собой фракцию, выкипающую при температуре от 135 до 280°С, получают прямой перегонкой нефти с применением процесса гидроочистки. Топливо РТ получают из сернистых нефтей, из которых нельзя получить топливо ТС-1 из-за высокого содержания меркаптановой серы. В топливо добавляют два вида присадок: противоизносную (присадка «К», Хайтек 580 - 0,003-0,007%) и антиокислительную (Ионол, Агидол-1 - 0,002-0,004%). Может храниться до 10 лет без изменения качества и полностью обеспечивает ресурс работы двигателя.

Топлива для сверхзвуковой авиации

Топливо **T-6** представляет собой керосино-газойлевую фракцию, выкипающую в пределах **195-315°C**. Его получают путем глубокого гидрирования газойля каталитического крекинга, в результате чего из топлив удаляются нестабильные и коррозионно-агрессивные соединения и снижается содержание ароматических углеводородов.

Для улучшения химической стабильности и повышения противоизносных свойств в топливо вводят присадки: антиокислительную Агидол -1 — 0,003-0,004% и противоизносную «К» — 0,002-0,004%.

Топливо Т-8В может быть получено гидроочисткой, гидродеароматизацией прямогонных фракций нефти или гидрокрекингом вакуумного газойля. Температурные пределы выкипания топлива 165-28 0 °C.

Для улучшения эксплуатационных свойств в топливо добавляют те же присадки, что и в топливо Т-6.

Характеристики топлива	Единица измерения	Нормы в отношении		ошении
			ВС с дозвуковой скоростью полета св	
		Джет А-1	TC-1	скоростью полета
Кинематическая вязкость при температуре минус 40 ° С, не более	MM ² /C	-	8	16
Кинематическая вязкость при температуре минус 20 ° С, не более	MM ² /C	8	-	-
Температура: начала кристаллизации, не выше замерзания, не выше	°C	- -47	-50 -	-50 -
Фракционный состав: 10% фракции отгоняется при температуре, не выше 50% фракции отгоняется при температуре, не выше	°C	205 300	165 230	220 290
Температура вспышки в закрытом тигле, не ниже	°C	38	28	28
Объемная [*] (массовая) доля ароматических углеводородов, не более	%	25 [*]	22	22
Массовая доля общей серы, не более	%	0,25	0,2	0,1
Массовая доля меркаптановой серы, не более	%	0,003	0,003	0,001
Высота некоптящего пламени, не менее	ММ	25	25	20

Примечание: топлива для реактивных двигателей, применяемых в холодных и арктических климатических районах России должны иметь температуру начала кристаллизации не выше минус 60 °C.

Характеристики топлива	Единица измерения	Нормы в отношении		
		BC с доз скоросты	•	ВС со сверхзвуковой
		Джет А-1	TC-1	скоростью полета
Содержание механических примесей и воды	-	отсутствие	отсутствие	отсутствие
Содержание фактических смол, не более	мг/100 см ³	7	7	7
Термоокислительная стабильность при контрольной температуре [*] , не ниже: перепад давления на фильтре, не более цвет отложений на трубке (при отсутствии нехарактерных отложений), не более	⁰ С мм.рт.ст. баллы по цветовой шкале	260 25 3	260 25 3	275 25 3
Термоокислительная стабильность динамическим методом при 150-180 °C: перепад давления на фильтре за 5 ч., не выше отложения на подогревателе, не более	кПа баллы	- -	- -	10 2
Удельная электрическая проводимость*: без антистатической присадки, не более с антистатической присадкой	пСм/м	10 50-600	10 50-600	10 50-600

Примечание: * - определяется на стадии подготовки производства и гарантируется изготовителем.

Наименование показателя		Метод испытания				
	TC-1	T-1C	T-1	T-2	PT	
1. Плотность при 20 °C, кг/м , не менее	775	80	0	755	775	По ГОСТ 3900-85
2. Фракционный состав: а) температура начала перегонки, °C:						По ГОСТ 2177-99
не ниже не выше б) 10% отгоняется при	- 150	- 15	0	60 -	135 155	
температуре, °С, не выше в) 50% отгоняется при	165	17	5	145	175	
температуре, °С, не выше г) 90% отгоняется при	195	22	5	195	225	
температуре, °С, не выше д) 98% отгоняется при	230	27	0	250	270	
температуре, °С, не выше е) остаток от разгонки, %, не	250	28	0	280	280	
более ж) потери от разгонки, %, не	1,5	-		-	1,5	
более	1,5	_		-	1,5	
3. Кинематическая вязкость, мм² /с, при температуре:						По ГОСТ 33-2000
20 °C, не менее минус 40 °C, не более	1,25 8	1, 10		1,05 6	1,25 16	
4. Низшая теплота сгорания, кДж/кг, не менее	42900	429	00	43100	43120	По ГОСТ 11065-90

Наименование показателя	TC-1	T-1C	T-1	T-2	PT	Метод испытания
5. Высота некоптящего пламени, мм, не менее	25	20	20	25	25	По ГОСТ 4338-91
6. Кислотность, мг КОН на 100 см топлива, не более в пределах	0,7	0,7	0,7	0,7	- 0,2-0,7	По ГОСТ 5985-79 и п.4.2 настоящего стандарта
7. Йодное число, г йода на 100 г топлива, не более	3,5	2,0	2,0	3,5	0,5	По ГОСТ 2070-82
8. Температура вспышки, в закрытом тигле, °C, не ниже	28	30	30	-	28	По ГОСТ 6356-75
9. Температура начала кристаллизации, °С, не выше	-60	-60	-60	-60	-55	По ГОСТ 5066-91, метод Б
10. Термоокислительная стабильность в статических условиях при 150 °C, не более: а) концентрация осадка, мг на 100 см						По ГОСТ 11802-88
топлива б) концентрация растворимых смол, мг на 100 см топлива	18	35 -	35 -	18	6 30	
в) концентрация нерастворимых смол, мг на 100 см топлива	-	-	-	-	3	
11. Объемная (массовая) доля ароматических углеводородов, %, не более	20(22)	18(20)	18(20)	20(22)	20(22)	По ГОСТ Р 52063-2003, ГОСТ Р ЕН 12916-2008 (По ГОСТ 6994-74)
12. Содержание фактических смол, мг на 100 см топлива, не более	5	6	6	5	4	По ГОСТ 1567-97 или по ГОСТ 8489-85
13. Массовая доля общей серы, %, не более	0,20	0,10	0,10	0,25	0,10	По ГОСТ 19121-73, ГОСТ Р 51947-2002

Наименование показателя	TC-1	T-1C	T-1	T-2	PT	Метод испытания
14. Массовая доля меркаптановой серы, %, не более	0,003	-	-	0,003	0,001	По ГОСТ 17323-71 или ГОСТ Р 52030-2003
15. Массовая доля сероводорода		(Этсутстви	ie		По ГОСТ 17323-71
16. Испытание на медной пластинке при 100 °C в течение 3 ч		В	ыдержива	ает		По ГОСТ 6321-92
17. Зольность, %, не более			0,003			По ГОСТ 1461-75
18. Содержание водорастворимых кислот и щелочей		(Этсутстви	ıe		По ГОСТ 6307-75
19. Содержание мыл нафтеновых кислот		Отсут	ствие		-	По ГОСТ 21103-75
20. Содержание механических примесей и воды		(Этсутстви	ie		По п.4.5
21. Массовая доля нафталиновых углеводородов, %, не более		-			1,5	По ГОСТ 17749-72
22. Люминометрическое число, не ниже		_			50	По ГОСТ 17750-72
23. Термоокислительная стабильность, определяемая динамическим методом при 150-180 °C: а) перепад давления на фильтре за 5 ч,						По ГОСТ 17751-79
кПа, не выше б) отложения на подогревателе, баллы,			_		10	
не более		-			2	
24. Взаимодействие с водой, балл, не более:						По ГОСТ 27154-86
а) состояние поверхности раздела б) состояние разделенных фаз			1 1			

Наименование показателя	TC-1	T-1C	T-1	T-2	PT	Метод испытания
25. Удельная электрическая проводимость, пСм/м: без антистатической присадки при 20 °С, не более с антистатической присадкой (при температуре заправки летательного аппарата) в пределах		По ГОСТ 25950-83				
26. Давление насыщенных паров, гПа (мм рт.ст.), не более	-	-	-	133 (100)	-	По ГОСТ 1756-2000
27. Содержание суммы водорастворимых щелочных соединений	- Отсутствие		-	По п.4.7		
28. Термоокислительная стабильность при контрольной температуре не ниже 260 °C: а) перепад давления на фильтре, мм рт.ст., не более б) цвет отложений на трубке, баллы по цветовой шкале (при отсутствии нехарактерных	25		-		25	По ГОСТ Р 52954-2008
отложений), не более	3		-		3	

В топливе после длительного хранения (более 3 лет) допускается отклонение от норм, указанных в таблице:

- по кислотности на 0,1 мг КОН на 100 см топлива;
- по содержанию фактических смол на 2 мг на 100 см топлива;
- по количеству осадка при определении термической стабильности в статических условиях на 2 мг на 100 см топлива.

Гарантийный срок хранения топлив для реактивных двигателей - 5 лет со дня изготовления.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Топлива для реактивных двигателей представляют собой ЛВЖ, выкипающую в пределах 130-280 °C для топлив РТ, ТС-1 и Т-1 и 60-280 °C для топливаТ-2; температура самовоспламенения топлив РТ, ТС-1, Т-1, Т-1С - 220 °C, топлива Т-2 - 230 °C.

Наименование показателя	TC-1, PT	T-1, T-1C	T-2
Температурные пределы воспламенения паров, °C:			
- нижний	25	50	-10
- верхний	65	105	34
Концентрационные пределы взрываемости, %, объемные:			
- нижний	1,5	1,8	1,0
- верхний	8,0	8,0	6,8

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Топлива для реактивных двигателей являются малоопасными продуктами и в соответствии с ГОСТ 12.1.007-76 относятся к 4-му классу.

Предельно допустимая концентрация паров углеводородов топлива в воздухе рабочей зоны 300 мг/м³ в соответствии с ГОСТ 12.1.005-88. В помещении для хранения и применения топлива для реактивных

двигателей запрещается обращение с открытым огнем.

Искусственное освещение должно быть во взрывобезопасном исполнении. Не допускается использовать инструменты, дающие при ударе искру.

При разливе топлива для реактивных двигателей необходимо собрать его в отдельную тару, место разлива промыть горячей водой и протереть сухой тряпкой. При разливе на открытой площадке место разлива засыпать песком с последующим его удалением.

Необходимыми мерами предосторожности при работе с топливом для реактивных двигателей является применение индивидуальных средств защиты согласно типовым отраслевым нормам.

Помещение, в котором проводится работа с топливом для реактивных двигателей, должно быть снабжено приточно-вытяжной вентиляцией. В помещениях для хранения топлива не допускается хранить кислоты, баллоны с кислородом и другие окислители.

При загорании применяют следующие средства пожаротушения: пену, при объемном тушении - углекислый газ, составы СЖБ и 3,5, перегретый пар (все средства, кроме воды).

Требования к характеристикам Джет А-1 (ГОСТ Р 52050)

Наименование показателя	Норма
Внешний вид: а) визуальная оценка б) цвет, баллы по шкале Сейболта в) содержание механических примесей, мг/дм³, не более	Чистое прозрачное, не должно содержать воды, осадка и взвешенных частиц при температуре окружающей среды Не нормируется. Определение обязательно 1,0
Кислотное число общее, мг КОН/г, не более	0,10
Объемная доля ароматических углеводородов, %, не более	25,0
Массовая доля меркаптановой серы, %, не более или докторская проба	0,0030 Отрицательная
Массовая доля общей серы, %, не более	0,25
Фракционный состав, °C: 10 % отгона при температуре, °C, не выше 50 % отгона при температуре, °C 90 % отгона при температуре, °C температура конца кипения, °C, не выше остаток от разгонки, %, не более потери от разгонки, %, не более	205,0 Не нормируется, определение обязательно То же 300,0 1,5 1,5
Температура вспышки, °С, не ниже	38,0
Плотность при температуре 15 °C, кг/м ³	775,0–840,0
Температура замерзания, °С, не выше	-47,0
Кинематическая вязкость при температуре минус 20 °C, мм²/с, не более	8,0
Низшая теплота сгорания ⁸⁾ , МДж/кг, не менее	42,80

Требования к характеристикам Джет А-1 (ГОСТ Р 52050)

Наименование показателя	Норма
Высота некоптящего пламени, мм, не менее или при объемной доле нафталиновых углеводородов не	25,0
более 3 %, не менее	19,0
Коррозия медной пластинки (2 ч ± 5 мин) при температуре 100 °C, не более	1
Термоокислительная стабильность на установке Джефтот (JFTOT) при 2,5 ч при температуре испытания не ниже 260 °C: перепад давления на фильтре, кПа (мм рт. ст.), не более отложения на трубке, менее	3,3 (25) 3 при отсутствии отложений, необычных по цвету или цвета «павлина»
Концентрация фактических смол, мг/100 см ³ , не более	7,0
Взаимодействие с водой: а) оценка поверхности раздела фаз, баллы, не более б) оценка светопропускания топлива микросепарометром, не менее:	1b
с антистатической присадкой без антистатической присадки	70 85
Удельная электрическая проводимость, пСм/м, для топлива: с антистатической присадкой без присадки, не более	50–600 10
Смазывающая способность: диаметр пятна износа, мм, не более	0,85

Требования к характеристикам Т-6 и Т-8В (ГОСТ 12308)

Наименование показателя	T-6	T-8B
Плотность при 20 ° C, кг/м ³ , не менее	840,0	800,0
Фракционный состав, °C: Температура начала перегонки, °C, не ниже 10 % отгона при температуре, °C, не выше 50 % отгона при температуре, °C 90 % отгона при температуре, °C 98 % отгона при температуре, °C остаток от разгонки, %, не более потери от разгонки, %, не более	195 220 255 290 315 Не норм. Опред. обязат. Не норм. Опред. обязат.	165 185 Не норм. Опред. обязат. Не норм. Опред. обязат. 280 Не норм. Опред. обязат. Не норм. Опред. обязат.
Кинематическая вязкость, мм²/с, при температуре: 20 °C минус 40 °C, не более	Не более 4,5 60	Не менее 1,5 16
Низшая теплота сгорания, кДж/кг, не менее	42900	42900
Высота некоптящего пламени, мм, не менее	20	20
Кислотность, мг КОН на 100 см ³ топлива: в топливе без противоизносной присадки, не более в топливе с противоизносной присадкой на месте потребления, не более	0,5 0,4-0,7 0,7	- 0,4-0,7 0,7
Йодное число, г йода на 100 г топлива, не более	0,8	0,9
Температура вспышки в закрытом тигле, °С, не ниже	62	45
Температура начала кристаллизации, °С, не выше	-60	-50
Объёмная (массовая) доля ароматических углеводородов, %, не более	8(10)	20(22)

Требования к характеристикам Т-6 и Т-8В (ГОСТ 12308)

Наименование показателя	T-6	T-8B
Массовая концентрация фактических смол, мг на 100 см ³ топлива, не более	4	4
Термоокислительная стабильность в статических условиях, не более:		
массовая концентрация осадка, мг на 100 см ³ топлива	6	6
массовая концентрация смол, растворимых в топливе, мг на 100 см ³ топлива	60	Не норм. Опред.обязат
массовая концентрация смол, не растворимых в топливе, мг на 100 см ³ топлива	отсутствие	Не норм. Опред.обязат
Массовая доля общей серы, %, не более	0,05	0,10
Массовая доля меркаптановой серы, %, не более	отсутствие	0,001
Испытание на медной пластинке	выдерживает	выдерживает
Содержание водорастворимых кислот и щелочей	отсутствие	отсутствие
Зольность, %, не более	0,003	0,003
Содержание механических примесей и воды	отсутствие	отсутствие
Содержание сероводорода	отсутствие	отсутствие
Массовая доля нафталиновых углеводородов, %, не более	0,5	2,0
Термоокислительная стабильность в динамических условиях при 150-180 °C:		
перепад давления на фильтре за 5 ч, кПа, не выше	10	10
отложения на подогревателе, баллы, не более	1	1
Люминометрическое число, не менее	45	50

Требования к характеристикам Т-6 и Т-8В (ГОСТ 12308)

Наименование показателя	T-6	T-8B
Взаимодействие с водой, баллы, не более:		
состояние поверхности раздела	1	1
состояние разделенных фаз	1	1
Удельная электрическая проводимость, пСм/м:		
без антистатической присадки, не более	10	10
с антистатической присадкой при температуре заправки		
техники, не менее	50	50
при 20 °C, не более	600	600
Термоокислительная стабильность при контрольной		
температуре не ниже 275 °C		
перепад давления на фильтре, кПа (мм рт.ст.), не более	3,3(25)	3,3(25)
цвет отложений на трубке, баллы по цветовой шкале (при		
отсутствии нехарактерных отложений), не более	3	3

В топливе после длительного хранения (более 3 лет) допускается отклонение от норм, указанных в таблице:

- по кислотности на 0,1 мг КОН на 100 см топлива;
- по содержанию фактических смол на 2 мг на 100 см топлива;
- по количеству осадка при определении термической стабильности в статических условиях на 2 мг на 100 см топлива.

Гарантийный срок хранения топлив для реактивных двигателей – T-6 - 10 лет со дня изготовления, T-8B - 5 лет.

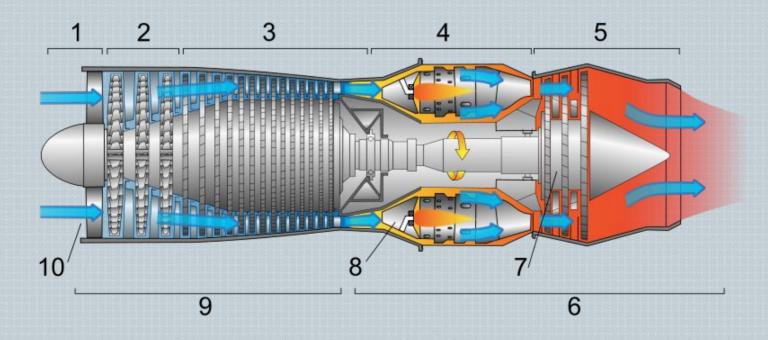
3. Основные эксплуатационные свойства топлив для реактивных двигателей.

Основные эксплуатационные свойства топлив для реактивных двигателей

К основным эксплуатационным свойствам топлив для реактивных двигателей относятся:

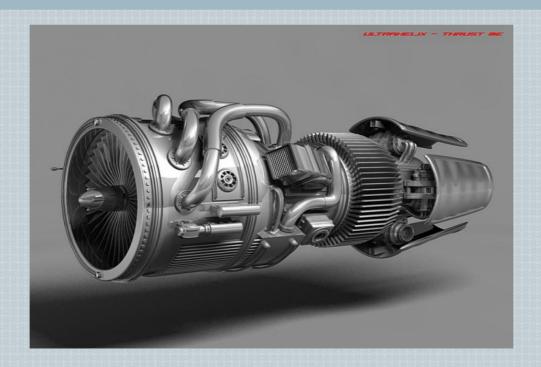
- прокачиваемость;
- противоизносные свойства;
- испаряемость;
- горючесть;
- склонность к образованию отложений;
- совместимость с конструкционными материалами;
- защитные свойства;
- биологическая стойкость;
- ТОКСИЧНОСТЬ.

Прокачиваемость


Прокачиваемость характеризует особенности и результат процесса прокачки топлива для реактивных двигателей по трубопроводам и топливным системам.

Нарушение подачи топлива возможно вследствие:

- повышения при охлаждении его вязкости выше расчетной величины и выделение твердой фазы (кристаллов воды или углеводородов);
- загрязнения фильтров механическими примесями и другими отложениями продуктов, находящихся в топливе и попадающих из атмосферного воздуха;
- выделения из топлива паров и растворенных газов.


Противоизносные свойства

В процессе эксплуатации реактивных двигателей наблюдается изнашивание топливной аппаратуры. Величина износа зависит от конструкции, технологии производства топливной аппаратуры, условий применения и от противоизносных свойств топлива, которое является смазывающей средой в узлах трения.

Повышение противоизносных свойств топлив в целях увеличения срока службы реактивных двигателей может быть достигнуто следующими способами:

- 1. Подбор сырья и оптимального углеводородного состава.
- 2. Введение очистки топлив на оптимальных режимах.
- 3. Применение противоизносных присадок.

Испаряемость

Уровень испаряемости авиакеросинов влияет на возможность нарушения его подачи вследствие образования паровых пробок, на пуск двигателя, скорость и полноту сгорания и потери.

Испаряемость топлив для реактивных двигателей характеризуется фракционным составом и давлением насыщенных паров.

Зависимость потерь при испарении от температуры

Высота Температура полета, км топлива, °C	Потери от испарения, % (об.)		
	Температура топлива, °С	Топливо (150–280°C)	Топливо (195–315°C)
18	117	51	0,8
18	130	59	3


Конструкционная совместимость, защитные свойства, токсичность

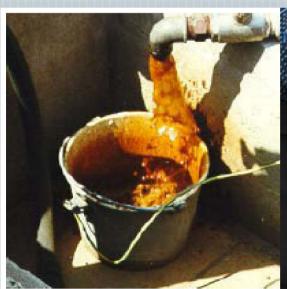
- **Конструкционная совместимость топлив** для реактивных двигателей характеризует их способность не вызывать коррозию и не разрушать уплотнительные и прокладочные материалы.
- Конструкционная совместимость связана с двумя основными свойствами топлив: коррозионной активностью и защитной способностью.
- **Коррозионная активность** топлив характеризует скорость коррозионного воздействия с конструкционными материалами топлив и продуктов их превращения.
- Коррозионное воздействие авиакеросинов на металлы и сплавы может приводить к снижению надежности авиатехники. К коррозионно-активным веществам, присутствующих в реактивных топливах, относятся сера и ее соединения, а также кислородные соединения в виде кислот.
- Коррозионность топлив оценивают по убыли массы пластин меди и бронзы, кислотности и содержанию серы.

Защитные свойства топлив характеризуют их способность защищать металлы от коррозии, тормозить процесс электрохимической коррозии металлов в присутствии воды.

Уровень защитных свойств отечественных реактивных топлив и условия их применения не требуют обязательного применения ингибиторов коррозии.

Токсичность характеризует особенности и результат воздействия топлива и продуктов его сгорания на человека и окружающую среду. Топлива для реактивных двигателей – малоопасные вещества (относятся к 4 классу опасности) и не требуют специальных мер защиты.

Основными микроорганизмами, вызывающими биоповреждения топлив, являются бактерии родов Pseudomnas, Nicrococcus, Micobacterium, а также грибы Hormoconis resinae, Aspergillus, Penicillum, Alternaria и др.

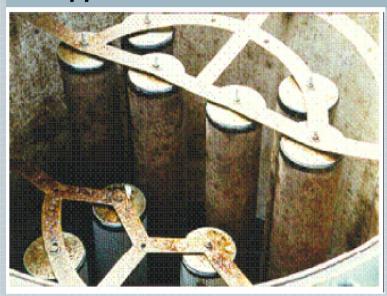

Из сотен тысяч видов микроорганизмов с точки зрения авиационной отрасли особого внимания заслуживает гриб Hormoconis resinae «керосиновый гриб» (прежнее название Cladosporium resinae), т.к. его споры переносятся по воздуху, они могут легко проникать в резервуары для хранения топлива и в топливозаправщики, при этом они слишком малы и потому не могут быть удалены в процессе фильтрации.

Граница раздела между топливом и эмульсионной водой - это идеальная среда для роста грибов, отсюда следует необходимость в ограничении скапливания эмульсионной воды. Особенно это важно при теплом климате, т.к. в таких условиях рост спор происходит очень быстро.

Топливо и содержащиеся в нем присадки - это основной источник питательных веществ для микроорганизмов, благодаря которому и поддерживается их рост в водной фазе, вблизи границы раздела фаз.

Видимые признаки роста микроорганизмов - это повышенная цветность или помутнение воды, иногда помутнение топлива. На границе раздела топливо-вода начинает плавать пена, при большом уровне загрязнения образуется грибковая пленка, обычно коричневого или черного цвета, иногда также красная, серая или белая.

При перемешивании микроорганизмы и синтезируемые ими полимеры слизи легко переходят из водной фазы и границы раздела фаз в топливную фазу.



Вред, наносимый микроорганизмами

- 1. Закупорка топливных фильтров ВС
- 2. Биообрастание топливомеров воздушных судов и резервуаров
- 3. Биообрастание фильтров
- 4. Коррозия

Стратегии защиты топлива от микроорганизмов

- 1.Слив отстоя топлива и контроль чистоты со всех хранения и заправки
- 2.Периодический осмотр резервуаров, фильтров, цистерн и т.д.
- 3. Определение наличия микроорганизмов на глаз
- 4.Применение специальных тест-наборов для определения роста микроорганизмов
- 5.Использование биоцидных присадок

Стратегии защиты топлива от микроорганизмов

Слив отстоя топлива и контроль чистоты со всех хранения и заправки Периодический осмотр резервуаров, фильтров, цистерн и т.д. Определение наличия микроорганизмов на глаз Применение специальных тест-наборов для определения роста микроорганизмов Использование биоцидных присадок