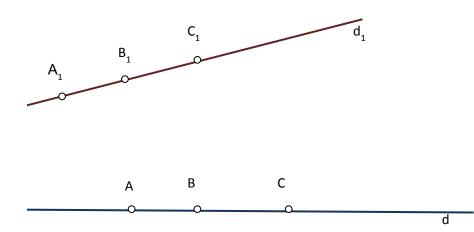
<u>Презентация</u> <u>Преобразование плоскости</u>

ГЕОМЕТРИЯ 9 КЛАСС

І-группа. Свойства движения

Теорема 1

При движении точки, лежащие на прямой, переходят в точки, лежащие на прямой, причем порядок взаимного расположения точек на прямой сохраняется.



Докозательство:

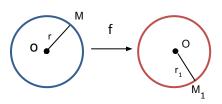
- 1. Пусть точки A, B и C принадлежат прямой d, причем A-B-C \rightarrow AB+BC=AC
- 2. $f(A)=A_1$, $f(B)=B_1$, $f(C)=C_1$, т.к. f- движение, то A . B. = AB.
- $^{1}B_{1}C_{1}=BC, A_{1}C_{1}=AC \rightarrow A_{1}B_{1}+B_{1}C_{1}=AB+BC=AC=A_{1}C_{1}\rightarrow$
- $A_1^1 B_1^1 + B_1 C_1 = A_1 C_1 \longrightarrow A_1$, B_1 и C_1 принадлежат некоторой прямой d_1 и $A_1 B_1 C_1$

Следствие 1

При движении прямые переходят в прямые, лучи - в лучи, отрезок заданной длины - в отрезок той же длины.

Теорема 2

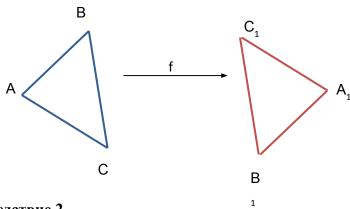
При движении окружность переходит в окружность того же радиуса.



- 1. f- некоторое движение, $f(O)=O_1$
- 2. М- произвольная точка окружности, следовательно $f(M)=M_1$, по определению движения
- O_1 M_1 =OM=r , таким образом при заданном движении окружность с центром O и радиусом r перейдет в окружность с центром O_1 и тем же радиусом r.

Теорема 3

При движении треугольник отображается на равный ему треугольник.



При движении отрезок переходит в отрезок равный данному. Следовательно, треугольник переходит в треугольник равный данному (по третьему признаку).

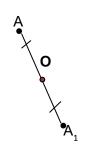
Следствие 2

При движении угол переходит в равный ему угол, фигура переходит в равную фигуру.

II-группа. Центральная симметрия

Определение.

Точки A и A_1 называются симметричными относительно точки O, если точка O принадлежит отрезку AA_1 и этой точкой отрезок АА, делится пополам.

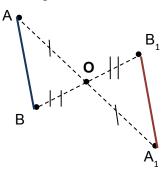


 $Z_0(A)=A_1$ О- центр симметрии А и А₁ – центрально симметричные.

T.к. точка A - произвольная точка плоскости, то отображение Z_0 задано на всей плоскости. Это отображение называется симметрией относительно точки О (центральной симметрией).

Теорема

Симметрия относительно точки является движением.



Доказательство:

Точки А, В и О не лежат на одной прямой

- 1. $Z_o(A) = A_1$, $Z_o(B) = B_1 \rightarrow AO = A_1O$, $BO = B_1O$, $\bot AOB = \bot A_1OB_1$ как вертикальные; 2. Следовательно, $\triangle AOB = \triangle A_1OB_1$ по двум сторонам и углу между ними (І признак);
- 3. Из равенства треугольников следует, что $AB = A_1B_1$

Точки А, В и О лежат на одной прямой

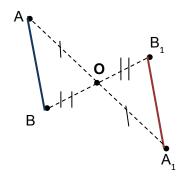
$$A_1B_1 = A_1O + OB_1 = OA + OB = AB$$
, а следовательно Z_0 - движение.

Свойства центральной симметрии

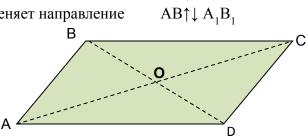
- 1. Центр симметрии точка O, единственная неподвижная точка, т.е. $Z_{o}(O) = O$
- 2. Прямая, проходящая через центр симметрии переходит в себя.

3. Прямая, не проходящая через центр симметрии, переходит в параллельную ей прямую (следует из равенства накрест лежащих углов при прямых AB и A_1B_1 , секущей BB_1)

$$O(AB) = A_1B_1, AB || A_1B_1$$



4. Центральная симметрия изменяет направление



$$Z_{o}(A) = A_{1}, \quad Z_{o}(A_{1}) = A$$

$$Z_{o}(A) = C, Z_{o}(B) = D, Z_{o}(C) = A, Z_{o}(D) = B$$

Определение:

Если некоторая фигура при симметрии относительно точки О переходит в себя , то точка О называется центром симметрии этой фигуры, а фигура называется симметричной относительно точки О.

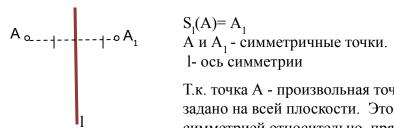
$$Z_{0}(\Phi) = \Phi$$

Α

III-группа. Осевая симметрия.

Определение.

Точки A и A_1 называются симметричными относительно прямой I, если отрезок AA_1 перпендикулярен прямой I и делится этой прямой пополам.



$$S_{l}(A) = A_{l}$$

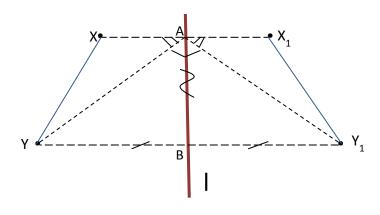
А и A_{l} - симметричные точки l- ось симметрии

Т.к. точка А - произвольная точка плоскости, то отображение S₁ задано на всей плоскости. Это отображение называется симметрией относительно прямой 1 (осевой симметрией).

Теорема

Симметрия относительно прямой является движение

Х и У -произвольные точки плоскости, лежащие в одной полуплоскости относительно прямой 1.



1.
$$S_1(X) = X_1$$
, $S_1(Y) = Y_1$, $XX_1 \cap l = A$, $YY_1 \cap l = B$

- 1. $S_1(X)=X_1$, $S_1(Y)=Y_1$, $XX_1\cap l=A$, $YY_1\cap l=B$ 2. ΔABY и ΔABY_1 прямоугольные (по определению осевой симметрии) $\Delta ABY = \Delta ABY_1$ - по двум катетам $\rightarrow AY = AY_1$ и $\angle YAB = \angle Y_1AB$
- 3. Рассмотрим ΔXAY и ΔX_1AY_1 :

ХА=Х₁А (по определению осевой симметрии)

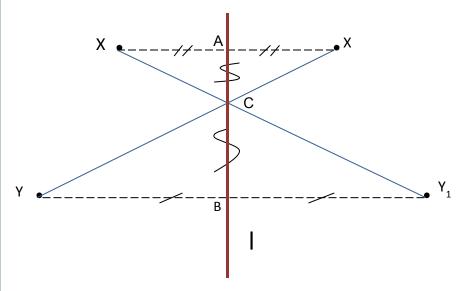
 $AY = AY_1$ (по доказанному)

 $\angle XAY = \angle X_1AY_1$ (как разность прямых и равных углов)

Следовательно, $\Delta XAY = \Delta X_1 AY_1$ (по двум сторонам и углу между признак)

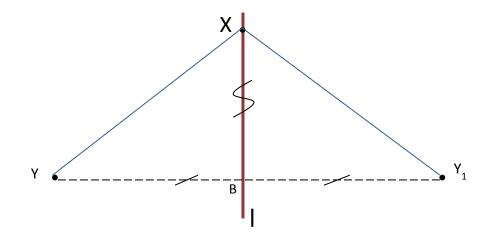
4. Из равенства треугольников следует равенство отрезков XY и X_1Y_1 .

Х и У -произвольные точки плоскости, лежащие в разных полуплоскостях относительно прямой 1.



Равенство отрезков XY и X_1Y_1 следует из равенства по двум катетам прямоугольных треугольников X_1CA и XCA, YCB и Y_1CB .

Х и У -произвольные точки плоскости, одна из точек лежит на прямой 1.



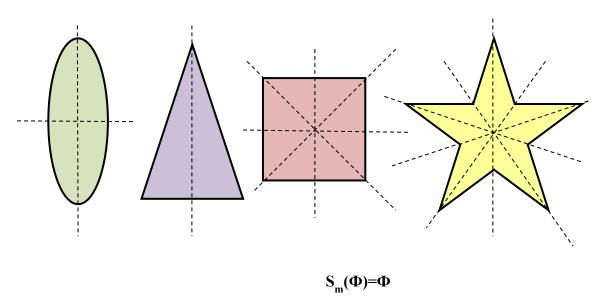
$$S_{_{1}}(X) = X, \ S_{_{1}}(Y) = Y_{_{1}} \to \Delta XYB = \Delta XY_{_{1}}B \ (по двум катетам) \to XY = XY_{_{1}}$$

Т.о. осевая симметрия - движение Свойства осевой симметрии

- 1. $S_l(l)$ =1 любая точка оси симметрии неподвижна (переходит сама в себя);
- 2. Прямая перпендикулярная оси симметрии переходит сама в себя;
- 3. Соответствующие прямые пересекаются на оси симметрии или параллельны;

Определение

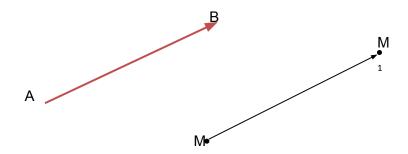
Если некоторая фигура при симметрии относительно прямой m переходит в себя, то прямая m называется осью симметрии этой фигуры, а фигура называется симметричной относительно прямой m.



IV группа. Параллельный перенос.

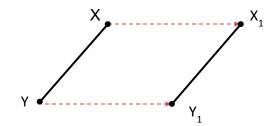
Определение.

Параллельным переносом на заданный вектор АВ называется преобразование плоскости, при котором каждая точка плоскости М переходит в M_1 так, что $\overrightarrow{MM}_1 = \overrightarrow{AB}$ и обозначается $P_{\overrightarrow{AB}}(M) = M_1$.



Теорема

Параллельный перенос является движением

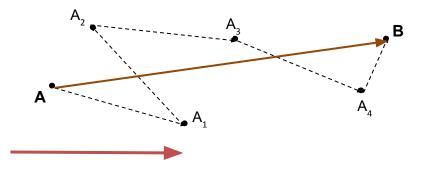


- $\begin{array}{l} 1.\ P_{AB}\ (X) = X_1\ , \quad P_{AB}\ (Y) = Y_1 \longrightarrow XX_1 \, \|AB,\, XX_1 \\ = AB;\ YY_1 \, \|AB,\, YY_1 = AB \end{array}$
- 2. Следовательно, $XX_1 || YY_1$ и $XX_1 = YY_1$ 3. YXX_1Y_1 параллелограмм по признаку
- 4. По свойству параллелограмма ХҮ=Х, Ү, значит параллельный перенос - движение.

Свойства параллельного переноса

- 1. Параллельный перенос не имеет неподвижных точек;
- 2. Прямые, параллельные направлению переноса, переходят в себя;
- 3. Параллельный перенос сохраняет направление, т.е. если $A \rightarrow A_1$ и $B \rightarrow B_1$, то лучи AB и A_1B_1 сонаправлены. Обратно: движение, сохраняющее направление является параллельным переносом.
- 4. Композиция (последовательное выполнение) двух параллельных переносов параллельный перенос, причем параллельные переносы перестановочны: $P_a \circ P_b = P_b \circ P_a = P_{a+b}$

Следствие: Любую композицию параллельных переносов можно заменить одним параллельным переносом (по правилу многоугольника)



Орнамент. Это узор, который получается, если некоторую фигуру подвергнуть параллельному переносу несколько раз.

V группа. Поворот.

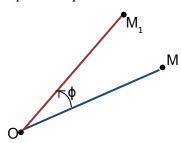
Определение.

Отметим на плоскости точку О (центр поворота) и угол ф (угол поворота).

Преобразование плоскости, при котором каждая точка М плоскости переходит в точку М, такую, что угол между лучами ОМ и $OM_{_{1}}$ равен ϕ , а $OM=OM_{_{1}}$, называется поворотом около точки O на угол ϕ .

ф>0 - если поворот совершается против часовой стрелки

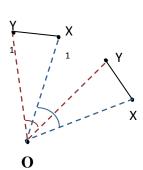
 ϕ <0 - если поворот совершается по часовой стрелки ϕ



$$R_o^{\varphi}$$
 (M)=M₁, $\phi > 0$

Теорема.

Поворот является движением.



- 1. $R_0^{\varphi}(X) = X_1, R_0^{\varphi}(Y) = Y_1 \to OX = OX_1, OY = OY_1$
- 2. $\angle XOY = \phi \angle X_1OY$, $\angle X_1OY_1 = \phi \angle X_1OY \rightarrow \angle XOY = \angle X_1OY_1$ 3. Значит, $\Delta XOY = \Delta X_1OY_1$ по двум сторонам и углу между ними, тогда $XY = X_1Y_1$

Т.к. точки Х и У произвольные, следовательно, поворот- движение

Свойства поворота.

- 1. Поворот вокруг точки О на 180° является центральной симметрией относительно точки О.
- 2. Центр вращения единственная неподвижная точка, R_o^{Ψ} (O)=O.

Окружности с центрами в точке О (центре поворота) - переходят сами в себя.

- 3. Если R_o^{φ} (A)=A₁ , R_o^{φ} (B)=B₁ , то угол между АВ и A₁B₁ равен ϕ ;
- 4. Композиция двух вращений с общим центром на углы α и β соответственно является вращением с тем же центром на угол $\alpha+\beta$. При этом вращения перестановочны.

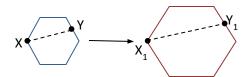
$$R_o^{\alpha} \circ R_o^{\beta} = R_o^{\beta} \circ R_o^{\alpha} = R_o^{\alpha + \beta}$$

- 5. Тождественное преобразование можно рассматривать как поворот на нулевой угол.
- 6. Композиция двух вращений с центрами O_1 и O_2 на углы α и β , соответственно, является вращением с новым центром O на угол $\alpha+\beta$, если $\alpha+\beta\neq360^\circ$, и параллельным переносом, если $\alpha+\beta=360^\circ$.

VI группа. Подобие.

Определение.

Преобразование фигуры F в фигуру F_1 называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и тоже число раз.



 $P_k(F) = F_1$, P_k - подобие с коэффициентом k

 $f: X \longrightarrow X_1$

 $f: Y \longrightarrow Y_1$, $X_1Y_1 = k \cdot XY$, где k > 0 -является одним и тем же для всех точек X и Y.

k - коэффициент подобия, а фигуры $F \circ F_1$ (подобны).

Подобие не является движением, т.к. расстояния изменяются.

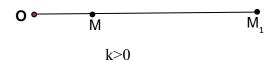
Свойства подобия.

- 1. Преобразование подобия переводит прямую в прямую, отрезок в отрезок, луч в луч. Действительно, если точки A,B,C лежат на одной прямой, то AC=AB+BC, тогда $A_1B_1 = k \cdot AB = K \cdot (AC+CB) = k \cdot AC+k \cdot CB = A_1C_1+C_1B_1 \rightarrow A_1, C_1B_1$ -лежат на прямой и порядок расположения точек сохраняется.
- 2. Преобразование подобия сохраняет углы.
- 3. Преобразование подобия переводит треугольник в треугольник. Соответственные стороны этих треугольников пропорциональны, а соответственные углы равны.
- 4. Преобразование подобия переводит окружность в окружность.
- 5. Преобразование, обратное преобразованию подобия с коэффициентом k, есть преобразование подобия с коэффициентом, равным $\frac{1}{k}$
- 6. Композиция преобразований подобия с коэффициентами k_1 и k_2 есть преобразование подобия с коэффициентом $k=k_1 \cdot k_2$

VII группа. Гомотетия.

Определение.

Зададим точку O и число $k\neq 0$. Точки M и M_1 являются соответствующими в гомотетии если $OM_1=k\cdot OM$. $H_{o,k}(M)=M_1$, где O- центр гомотетии, k- коэффициент гомотетии.



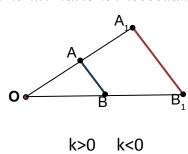
Частные случаи гомотетии:

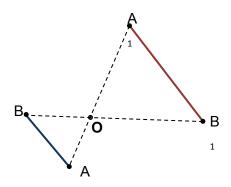
k=1 - тождественное преобразование

k=-1 - центральная симметрия относительно точки О.

Теорема.

Гомотетия является подобием.

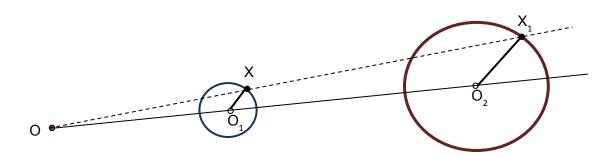




1. $H_{o,k}(A)=A_1$, $H_{o,k}(B)=B_1 \rightarrow OA_1=k \cdot OA$, $OB_1=k \cdot OB$ 2. $A_1B_1=OB_1-OA_1=k \cdot OB-k \cdot OA=k \cdot (OB-OA)=k \cdot AB$ Следовательно, гомотетия является подобием Из подобия следует, что расстояние между соответствующими точками не сохранилось, таким образом, **гомотетия не является движением.**

Свойства гомотетии:

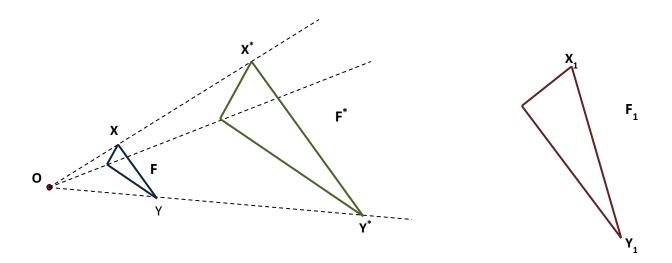
- 1. Гомотетия переводит прямую в прямую, отрезок- в отрезок;
- 2. Гомотетия с k>0 переводит луч в себя (в сонаправленный луч), а гомотетия с k<0 переводит луч в противоположно направленный луч;
- 3. Гомотетия сохраняет углы;



4. Гомотетия переводит окружность в окружность

 $H_{o,k}(O_1)\!\!=\!\!O_2, H_{o,k}(X)\!\!=\!\!X_1\!\!\to\!\!OO_2\!\!=\!\!k\!\cdot\!\!OO_1$, $OX_1\!\!=\!\!k\!\cdot\!\!OX_2$, $\angle O$ - общий $\to\!\!\Delta OO_1X$ подобен ΔOO_2X_1 по второму признаку \to $O_2X_1\!\!=\!\!k\!\cdot\!\!O_1X$;

- т.к. Х произвольная точка окружности, следовательно, окружность переходит в окружность;
- 5.Преобразование, обратное гомотетии с коэффициентом $k \neq 0$, есть гомотетия с тем же центром гомотетии и коэффициентом, равным $\frac{1}{k}$
- 6.При k≠1 гомотетия переводит прямую, не проходящую через центр гомотетии, в параллельную прямую, отрезок в параллельный отрезок. Прямые, проходящие через центр гомотетии, отображаются на себя (Следует из подобия и из определения гомотетии);
- 7. Композиция двух гомотетий с общим центром и коэффициентами k_1 и k_2 есть гомотетия с тем же центром и коэффициентом $k=k_1 \cdot k_2$;
- 8.Преобразование подобия с коэффициентом к есть композиция гомотетии с коэффициентом к и движения.



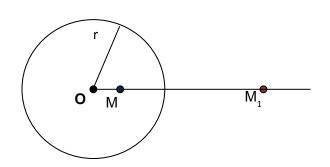
Пусть P_k (F)= F_1 , где $k>0 \rightarrow P_k$ (X)= X_1 и P_k (Y)= $Y_1 \rightarrow X_1Y_1$ = $k \cdot XY$ (из определения подобия); $H_{o,k}(F)$ = F^* ,k>0 и O- произвольная $\to H_{o,k}(X)$ = X^* , $H_{o,k}(Y)$ = $Y^* \rightarrow X^*Y^*$ = $k \cdot XY$ (из определения гомотетии); Таким образом, для любых точек X^* ; Y^* фигуры F^* верно равенство X_1Y_1 = X^*Y^* , которое означает, что фигуры F^* и F_1 равны, а значит, существует движение, переводящее фигуру F^* в фигуру F_1 .

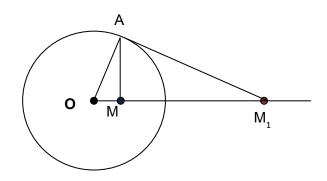
VIII группа. Инверсия.

Определение.

Пусть на плоскости задана окружность (O;r) с выколотым центром О. Инверсией $\mathbf{I}_{\mathbf{o},\mathbf{k}}$ с полюсом О и степенью $\mathbf{k}=\mathbf{r}^2$ называется взаимно - однозначное преобразование $\mathbf{M} \rightarrow \mathbf{M}_1$ такое, что $\mathbf{O} \mathbf{M} \cdot \mathbf{O} \mathbf{M}_1 = \mathbf{r}^2$ (точки O,M , \mathbf{M}_1 -лежат на одной прямой).

Точка О выколота, т. к. не имеет образа





Построение соответствующих в инверсии точек:

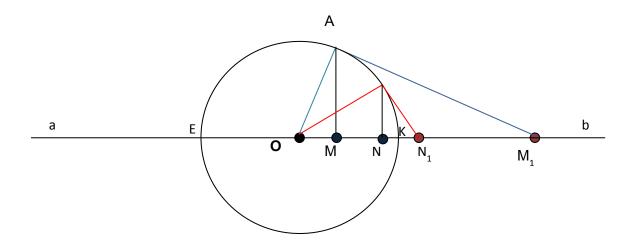
- 1. Точка М внутри круга инверсии. МА \bot ОМ; ОА- радиус; АМ $_1$ \bot ОА (АМ $_1$ касательная); М $_1$ = ОМ \cap АМ $_1$ (ОМ \cdot ОМ $_1$ = r^2 ,т.к. катет есть среднее геометрическое между гипотенузой и проекцией катета на гипотенузу);
- 2. Точка М вне круга инверсии. Построения выполняются в обратном порядке: проводится касательная к окружности и из точки касания опускается перпендикуляр.

Свойства инверсии:

1. Если при инверсии точка M переходит в M_1 , то точку M_1 эта инверсия переводит в точку M (инверсия - инволютивное преобразование, т.е. \mathbf{I}^2 =е -тождественное преобразование)

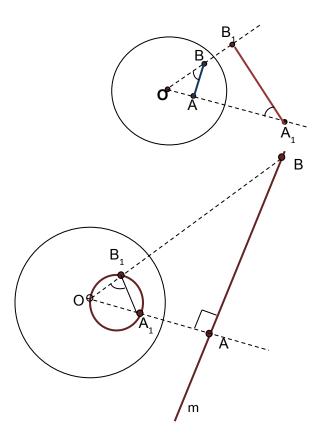
$$I_{o,k}(M)=M_1$$
, to $I_{o,k}(M_1)=M$;

- 2. При инверсии точки, расположенные внутри круга инверсии, переходят в точки, расположенные вне круга инверсии. Точки, расположенные вне круга инверсии, переходят во внутренние точки круга. Точки окружности инверсии переходят в себя.
- 3. Прямая, проходящая через центр инверсии, переходит в себя



Полуинтервал (OK] \rightarrow луч [Kb), полуинтервал (OE] \rightarrow луч [Ea), K \rightarrow K, E \rightarrow E

4. Прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.



1.Если
$$\mathbf{I}_{\mathbf{0},\mathbf{k}}(\mathbf{A})=\mathbf{A}_{1}$$
, $\mathbf{I}_{\mathbf{0},\mathbf{k}}(\mathbf{B})=\mathbf{B}_{1}$
 \Rightarrow OA·OA $_{1}=$ OB·OB $_{1}=$ r 2
 \Rightarrow OA:OB=OB $_{1}$:OA $_{1}$ и \angle AOB= \angle В $_{1}$ ОА $_{1}$
 \Rightarrow Δ AOB $^{\odot}\Delta$ В $_{1}$ ОА $_{1}$ (Ппризнак)
 \Rightarrow \angle **OBA**= \angle **OA** $_{1}$ В $_{1}$

2. Рассмотрим окружность инверсии (O,r) и прямую m, не проходящую через точку O и точку B \in m, проведем OA \perp m, построим точку A_1 и B_1 такие, что $\mathbf{I}_{\mathbf{o},\mathbf{k}}(A) = A_1$, $\mathbf{I}_{\mathbf{o},\mathbf{k}}(B) = B_1$ По пункту (1) Δ AOB $^{\odot}\Delta$ B $_1$ OA $_1$ и \angle OAB= \angle OB $_1$ A $_1 = 90^0 \Rightarrow$ В $_1$ лежит на окружности S с диаметром OA $_1$.