ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТИ

СЛУЧАЙНАЯ ИЗМЕНЧИВОСТЬ. СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ И ФОРМУЛА БАЙЕСА. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

СЛУЧАЙНАЯ ИЗМЕНЧИВОСТЬ

Идея случайности

Случайная изменчивость

Закономерность и случайность

НАУКА - ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Изучением закономерностей, которые порождаются случайными событиями

СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ

Вероятность - численная мера возможности наступления некоторого события.

A - случайное событие — вероятность данного события обозначается через P(A).

для любого события A: 0 < P(A) < 1.

СЛУЧАЙНЫЕ СОБЫТИЯ

элементарный исход

пространство элементарных событий – Ω

 $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$, - *Случайные события* (события), будем называть подмножества пространства элементарных событий Ω .

Пространством элементарных событий называют произвольное множество Ω , $\Omega = \{\omega\}$. Элементы ω этого множества Ω называют элементарными событиями.

событие Ω называется достоверным событием

пустое множество Ø называется невозможным событием

противоположным (отрицанием события A) событию A называется событие, состоящее в том, что событие A не произошло. Обозначается \bar{A} , $\bar{A} = \Omega \backslash A$

несовместными событиями называются события A и B, для которых A $B = \emptyset$.

объединением, или суммой, событий A и B называют событие C, которое состоит в том, что происходит хотя бы одно из событий A и B. $C = A \cup B$ или C = A + B.

пересечением, или *произведением* событий A и B называют событие C, которое состоит в том, что происходят оба события A и B. $C = A \cap B$ или C = AB

Разностью событий A и B называется событие, состоящее из всех элементарных событий принадлежащих A, но не принадлежащих B. Обозначается $A \backslash B$.

СВОЙСТВА ВЕРОЯТНОСТИ

0 ≤ *P*(*A*)≤ 1 для любого события *A*.

P(A + B) = P(A) + P(B), если события A и B несовместимы, а в общем случае P(A + B) = P(A) + P(B) - P(AB).

Вероятность достоверного события равна 1, а невозможного события — нулю.

НЕЗАВИСИМОСТЬ СОБЫТИЙ

События A и B называются независимыми, если P(AB) = P(A)P (B).

УСЛОВНАЯ ВЕРОЯТНОСТЬ**•**

Условной вероятностью $P_A(B) = P(B|A)$ называют вероятность события B, вычисленную в предположении, что событие A уже наступило.

$$P(AB) = P(B)P(A|B) = P(A)P(B|A)$$

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

ВЕРОЯТНОСТИ И ФОРМУЛА БАЙЕСА

 $P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+...+P(B_n)P(A|B_n)$

$$P(B_i | A) = \frac{P(B_i)P(A | B_i)}{P(A)}, i = 1,...,n$$

ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

 $P_{\xi}(X) = P(\xi X)$ - распределение вероятностей P_{ξ} на X

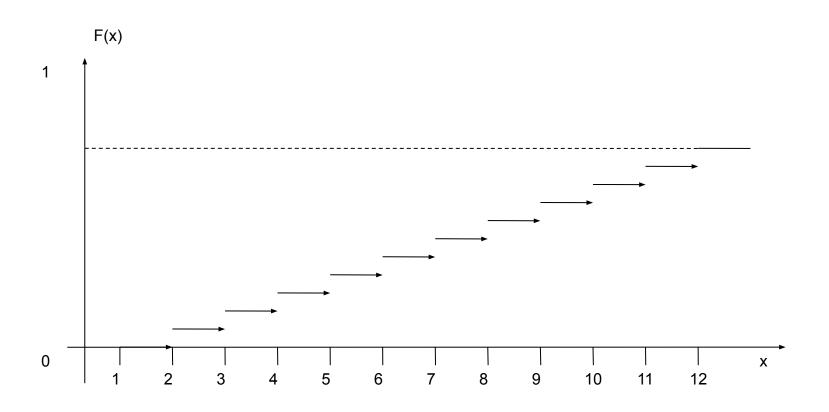
ВИДЫ СЛУЧАЙНЫХ ВЕЛИЧИН

дискретные

непрерывные

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ

Функцией распределения F(x) случайной величины ξ называют $F(x) = P(\xi \le x)$.



ПЛОТНОСТЬ ВЕРОЯТНОСТИ

Функция p(t) называется плотностью вероятности в точке t (иногда — плотностью случайной величины ξ), если (для любых чисел a,b (пусть a < b)

$$P(a < \xi < b) \int_{b}^{a} p(x)d(x)$$

РАСПРЕДЕЛЕНИЯ, СОСРЕДОТОЧЕННОГО В ДВУХ ТОЧКАХ

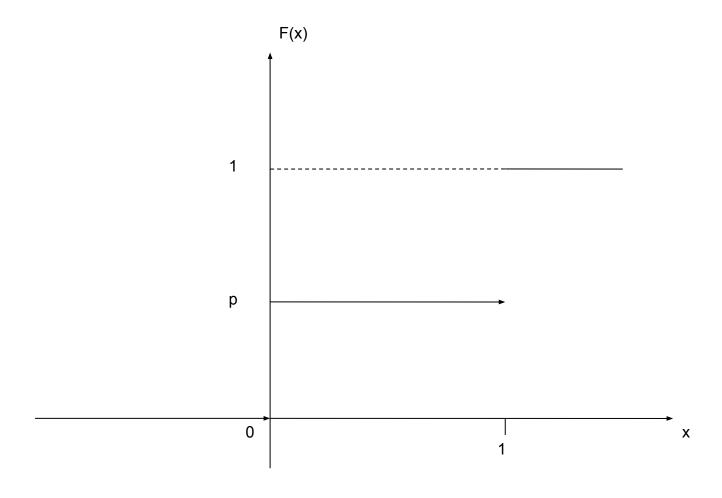
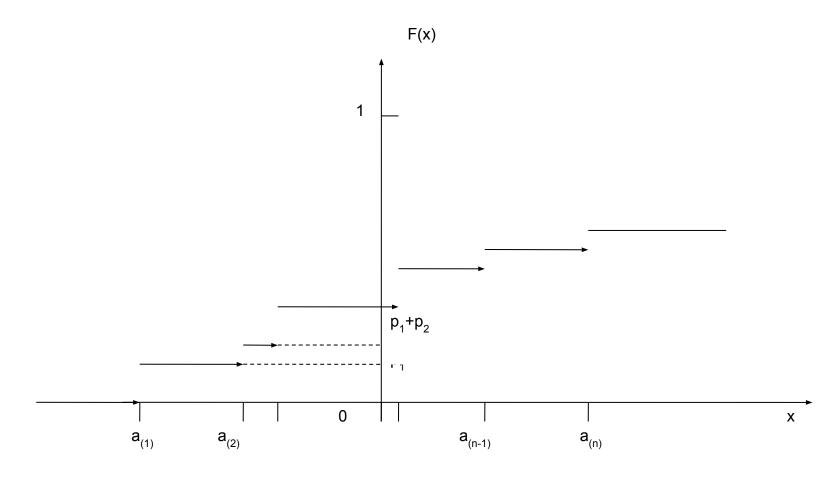


ГРАФИК ФУНКЦИИ ДИСКРЕТНОГО РАСПРЕДЕЛЕНИЯ



ПРИМЕР НЕПРЕРЫВНОЙ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

