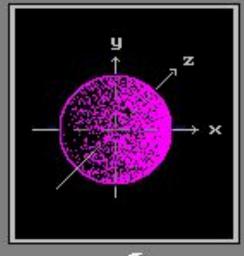

OPFAHNAECKNX COETNHEHNN

Теория жимического строения (А.М. Бутлеров) Современные теории строения атома мкимической связи

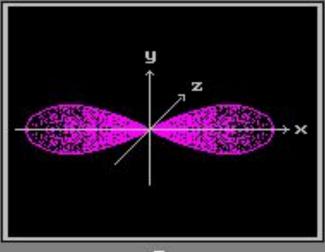
строение строение электронное екнесств Строение екнесстр

СВОЙСТВА ВЕЩЕСТВА

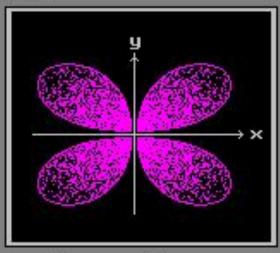
Строение атома


Свойства химических соединений зависят от природы и строения атомов, входящих в их состав

Свойства электрона



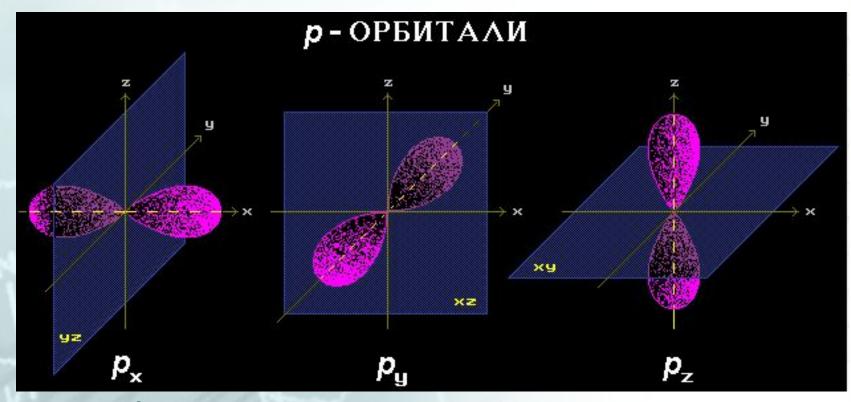
Часть пространства, в котором вероятность нахождения максимальна, называют орбиталью или электронным облаком


Типы атомных орбиталей

х-орбиталь

 $p_{\rm x}$ -орбиталь

 d_{xy} -орбиталь


Атомная орбиталь (AO) - область наиболее вероятного пребывания электрона в электрическом поле ядра атома

Форма и энергия АО

Первый уровень - 1s, второй - 2s

Форма и энергия АО

Второй уровень - 2s, 2p_x, 2p_y, 2p_z

Заполнение атомных орбиталей электронами

- Принцип устойчивости.

АО заполняются электронами в порядке повышения их энергетических уровней:

1s < 2s < 2p < 3s < 3p < 4s < 3d ...

Принцип устойчивости

Заполнение орбиталей двух энергетических уровней

Основной энергети— ческий уровень п	Максимальное число электронов 2n ²	Символ	ы орбиталей
1	2	1s	
2	8	2s	2p _x ,2p _y ,2p _z

Электронная конфигурация элементов-органогенов

Зиемент	Атомный	3an	олнен	ue o	Зиектронная		
	номер	1s	1s 2s 2p 3s 3p		конфигурация		
Н	1	1			(Выде	aous:	1s1
C	6	2	2	2	Вален		1s ² 2s ² 2p ²
N	7	2	2	3	элект	роны)	1s ² 2s ² 2p ³
0	8	2	2	4			1s ² 2s ² 2p ⁴
P	15	2	2	6	2	3	1s ² 2s ² 2p ⁶ 3s ² 3p ³
S	16	2	2	6	2	4	ls ² 2s ² 2p ⁶ 3s ² 3p ⁴

Заполнение атомных орбиталей электронами

- Принцип Паули.

На одной AO могут находиться не более двух электронов с противоположными спинами.

Заполнение атомных орбиталей электронами

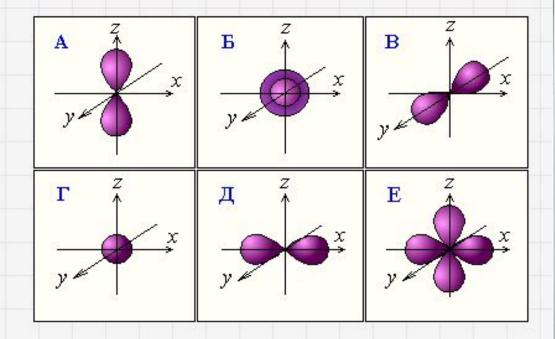
Правило Хунда.

На AO с одинаковой энергией, так называемых вырожденных орбиталях, электроны стремятся расположиться по одному с параллельными спинами.

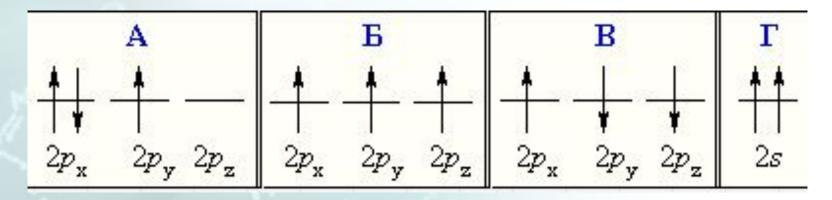
Разрешенные и неразрешенные электронные конфигурации

Разрешенная конфигурация Неразрешенные конфигурации

Принцип Паули

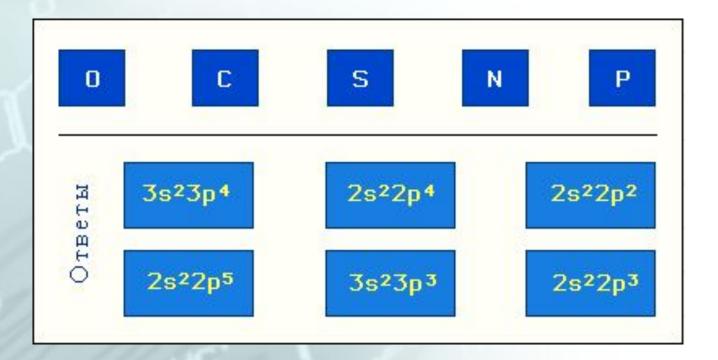


Правило Хунда (на примере атома углерода)

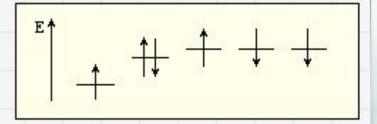


- 1. Что такое атомная орбиталь?
- 🗹 орбита, по которой движется электрон в поле ядра атома.
 - часть пространства, в котором вероятность нахождения электрона минимальна.
- область наиболее вероятного пребывания электрона в поле ядер атомов, составляющих молекулу.
- 🗹 область наиболее вероятного пребывания электрона в электрическом поле ядра атома.

2. Укажите типы орбиталей Б и Д:



3. Неправильное заполнение атомных орбиталей электронами выражено схемой:



- 1) A, B, Γ
- 2) B, Γ
- 3) <u>A, Γ</u>
- 4) Γ

4. Установите соответствие между символом химического элемента и строением внешнего электронного уровня его атома.

5. В электронной конфигурации

- нет запрета по энергии
- нарушено правило Хунда
- не соблюдаются принцип устойчивости и запрет Паули
- не соблюдаются правило Хунда и принцип устойчивости
- 💶 не соблюдаются правила Хунда, Паули и принцип устойчивости

Основные типы химических связей

 $\Delta \chi = \chi_A - \chi_B$

 χ_A и χ_B – электроотрицательности атомов A и B

Основные типы химических связей

Ионная связь

 $\Delta \chi > 2$

Ковалентные связи

 $\Delta \chi \leq 2$

Полярная ковалентная связь

 $2 > \Delta \chi > 0.5$

Неполярная ковалентная связь

 $0.4 > \Delta \chi = 0$

Увеличение различий в эпектроотрицательности ($\Delta \chi$) связанных атомов

Ионная связь

химическая связь, основанная на электростатическом притяжении ионов

В органических соединениях встречается редко, например, в органических солях: RCOO⁻Na⁺

19 10.02.2018

Электроотрицательность

Способность атома удерживать внешние валентные электроны

Подчиняется периодическому закону: растет слева направо в периодах и снизу вверх в главных подгруппах в таблице Д.И. Менделеева

Ковалентная связь

Связь, образованная путём обобществления пары электронов связываемых атомов

H:H C:C

C: H

C:O

H - H

H₃ C-CH₃

 H_3C-H

H₃ C-OH

Свойства ковалентной связи

- Направленность
- Насыщаемость
- Полярность
- Поляризуемость

Направленность

Молекулярное строение органических молекул имеет геометрическую форму. Количественной мерой направленности является угол между двумя связями (валентный угол)

Насыщаемость

Способность атомов образовывать ограниченное число ковалентных связей. Количество связей определяется числом внешних атомных орбиталей атома.

Полярность

Обусловлена неравномерным распределением электронной плотности вследствии различной электроотрицательности атомов по шкале Л.Полинга:

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

Полярность

Ковалентные связи делятся на полярные и неполярные.

Неполярные связи между двумя одинаковыми атомами: Н—Н, С—С.

Полярность

Полярные связи между двумя атомами с разной электроотрицательностью: H-F, C-CI.

$$\delta + \delta - C - N$$

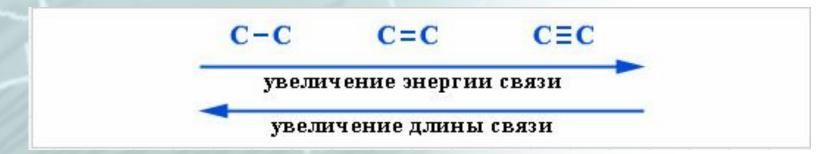
$$\frac{\delta - \delta +}{O - H}$$

Поляризуемость

Смещение электронов под воздействием внешнего электрического поля другой частицы.

$$C \rightarrow CI$$

$$C \rightarrow N$$


Длина связи

Расстояние между центрами двух связанных атомов. На характеристики связей влияет их кратность

Энергия связи

Энергия, выделяемая при образовании связи или необходимая для разъединения двух связанных атомов

Дипольный момент (µ или D)

Величина, характеризующая полярность связи:

$$|\overline{\mu}| = l \cdot q$$

I - длина связи q - эффективный заряд

Основные характеристики некоторых ковалентных связей

Связь	Тип гибридизации атома углерода	Энергия, кДж/моль	Длина, нм	Дипольный момент, D
С-С	sp ³	348	0,154	0
C=C	sp^2	620	0,133	0
C≡C	sp	814	0,120	0
С-Н	sp ³	414	0,110	0,2
C-H	sp	435	0,107	1,1
C-O	sp^3	344	0,143	1,1
C=O	sp^2	708	0,121	2,40
C-C1	sp ³	331	0,176	2,05
C-Br	sp ³	277	0,194	2,04
C-N	sp ³	293	0,147	0,4
О-Н		460	0,096	1,51
N-H		390	0,101	1,4

- 1. Что такое электроотрицательность атома?
- отрицательный заряд атома в молекуле
- сродство к электрону
- 🗹 способность атома переходить в возбужденное состояние
- 🗹 способность атома удерживать валентные электроны и притягивать электроны других атомов
- 🛂 потенциал ионизации атома

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

2. Как изменяется электроотрицательность элементов в Периодической системе?

с увеличением порядкового номера атома увеличивается в периоде и уменьшается в группе

с увеличением порядкового номера атома увеличивается в периоде и в группе

не подчиняется Периодическому закону

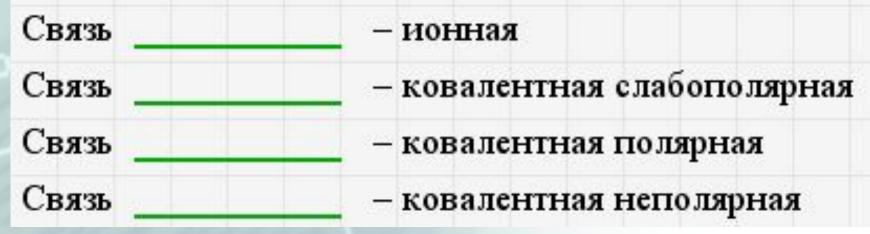
Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

3. В каком порядке увеличивается электроотрицательность следующих элементов: C, N, P, Br ?

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

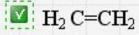
35 10.02.2018

- 4. Укажите соединения, в которых имеются:
 - а) только ковалентные связи;
 - б) ковалентные и ионные.
 - A. CH₃ Cl B. CH₃ NH₂
 - **B.** MgF_2 **Γ.** CH_3 ONa
- а) соединения A, Г;
- б) соединение Б
- 🗹 а) соединения А, Б, В, Г; б) нет

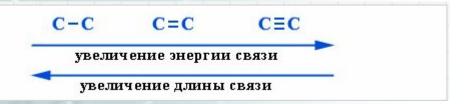

а) соединения А, Б;

б) соединения В, Г

🛛 а) соединения А, Б;


б) соединение Г

5. Укажите тип связей в молекуле:



6. В молекуле какого из представленных веществ длина связи углерод-углерод наибольшая?

