Определение DL-моделей

- Опр 1. Величина l, характеризующая запаздывание в воздействии фактора на результат называется <u>лагом</u> (или <u>лагом</u> запаздывания).
- Опр 2. Переменные, сдвинутые на определенное количество времени (лагов) вперед или назад, называются лаговыми переменными.
- Опр 3. Модели, характеризующие воздействие значений переменной в текущий период на бедующее значение результативной переменной, называется моделями с распределенными лагами (Distributed lags .DL-модели). Подобные модели позволяют определить отсроченный эффект во времени воздействия факторной переменной на результат. Подобные модели содержат как текущее значение результативной (зависимой переменной y_t), так и лаговые значения независимой переменной (переменных x_{t-1} , x_{t-2} , x_{t-3} ,...).

$$Y_{t} = \alpha_{0} + \alpha_{1} \cdot X_{t} + \alpha_{2} \cdot X_{t-1} + \alpha_{3} \cdot X_{t-2} + \dots + \alpha_{p+1} \cdot X_{t-p}$$
 (1)

Здесь p — длина максимального лага запаздывания является порядком DL-модели (Обозначается:DL(p))

Примеры применения DL-моделей

- Определение отсроченного эффекта инвестиций (вложений) на прибыль предприятия.
- Определение отсроченного влияния рекламных издержек на спрос.
- Определение отсроченного влияния увеличения заработной платы на мотивацию труда (производительность труда или текучесть кадров)
- Влияние доходов на расходы.
- Влияние увеличения среднедушевых доходов на динамику демографических показателей

Классификация DL-моделей

• Модель с распределенными лагами с конечным лагом запаздывания p.

$$Y_{t} = \alpha_{0} + \alpha_{1} \cdot X_{t} + \alpha_{2} \cdot X_{t-1} + \alpha_{3} \cdot X_{t-2} + \dots + \alpha_{p+1} \cdot X_{t-p}$$

• Модель с распределенными лагами с бесконечным лагом запаздывания $p \rightarrow \infty$.

$$Y_t = \alpha_0 + \alpha_1 \cdot X_t + \alpha_2 \cdot X_{t-1} + \alpha_3 \cdot X_{t-2} + \dots + \alpha_{p+1} \cdot X_{t-p} + \dots$$

Идентификация DL-модели

Опр. 4. Под идентификацией DL-модели (1) понимают определение ее порядка p, то есть длину максимального лага запаздывания для значимой лаговой переменной.

Осуществить процедуру идентификации можно:

- 1. С Помощью критерия Стьюдента: Модель (1) можно рассматривать как многофакторную регрессию, где в качестве регрессоров выступают лаговые переменные, для которых можно проверить критерии значимости.
- 2. С помощью информационных критериев Акайке и Шварца: строят несколько уравнений DL-моделей для различной длины максимального лага запаздыванияи выбирают ту модель, для которой значения информационных критериев будут минимальными.
- 3. Исходя из теоретических предпосылок экономической теории. Например, согласно закону ожидания Врума.
- 4. На основе анализа кросс-коррелограмм кросскорреляционной функций.

Понятие кросс-коррелограмм кросскорреляционной функций.

Опр. 5. Под кросскоррелограммами понимают графики кросскорреляционных функций, где по оси абсцисс откладываются лаги запаздывания, а по оси ординат коэффициенты корреляции с лаговыми переменными. Сдвинутыми на заданное количество лагов вперед и назад.

STDRES1'2,STDRES1(-i) STDRES1'2,STDRES1(+i)		i	lag	lead
		0	-0.0748	-0.0748
ılı .	1	1	-0.0037	0.0203
ip .	1 1	2	-0.0077	0.0111
•	1 1	3	-0.0285	0.0090
1)	1 16	4	0.0349	-0.0028
1)	1 1	5	0.0289	0.0130
1	1 16	6	-0.0043	-0.0021
1	10	7	-0.0112	-0.0007
<u>.</u>	1 16	8	0.0006	-0.0116
•	1 1	9	-0.0379	0.0131
i)i	1 16	10	0.0105	-0.0056
īþ.	10	11	0.0099	-0.0068
jh .	1 4	12	0.0105	0.0097
ih	1 16	13	-0.0094	-0.0083
, ji		14	0.0123	0.0197

Гутаксимальную длину дага запаздывания определяют посчитывая количество значимых (выходящих за границы белого шума) коэффициентов кросскорреляционной функции.

Интерпретация параметров DL-моделей

- 1. Коэффициент α_l в модели (1) характеризует среднее абсолютное изменение результативной переменной y_t при изменении значения независимой переменной x_t на единицу своего измерения в некоторый фиксированный момент времени t, без учета воздействий лаговых значений переменной x. Этот коэффициент называют краткосрочным мультипликатором.
- 2. В момент времени t+1 совокупное воздействие факторной переменной \mathbf{x}_{t-} на результат \mathbf{y}_{t} составит $\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2}$ условных единиц, В момент времени t+2 совокупное воздействие факторной переменной \mathbf{x}_{t-} на результат \mathbf{y}_{t} составит $\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2} + \mathbf{\alpha}_{3}$ условных единиц. Такие суммы называются промежуточными мультипликаторами.
- 3. Общее изменение результата через р периодов времени называется долгосрочным мультипликатором и определяется как:

$$\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_p = \alpha$$

Интерпретация параметров DL-моделей

4. Определим относительные коэффициенты DL-модели α, как:

$$A_j = \alpha_{J,S}/\beta + 1 : p+1$$

Если все коэффициенты α_i имеют одинаковый знак, то для любого j:

$$0 < A_{jM} < 1$$

$$\sum_{j=1}^{p+1} A_j = 1$$

Относительные коэффициенты измеряют долю общего изменения результативного признака в момент времени t+j. $\bar{l} = \sum_{j=1}^{p+1} j \cdot A_j$

5. Средний лаг определяется как:

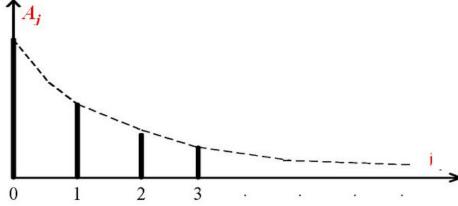
и измеряет средний период, в течении которого будет происходить изменение результата под воздействием изменения регрессионного фактора в момент времени t.

6. Медианный лаг l_{Mo} характеризует период времени, в течении которого с момента времени t будет реализована половина общего воздействия лаговых факторов на результат, то есть для него справедливо:

$$\sum_{j=1}^{Me} A_j \approx 0.5$$

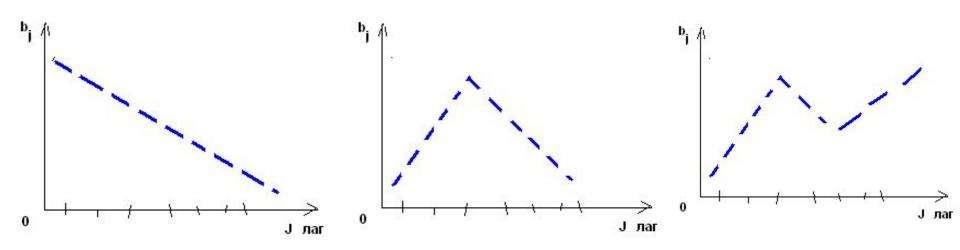
Изучение структуры лага

- 1. Если с ростом величины лага p коэффициенты при лаговых переменных A_i убывают, то имеет место линенйная структура лага.
- 2. Если с ростом величины лага p коэффициенты при лаговых переменных A_j сначала возрастают, а затем убывают. То это или треугольная или квадратичная структура лага.
- 3. Если с ростом величины лага p коэффициенты при лаговых переменных A_j сначала убывают, а затем возрастают. То это или V-образная или квадратичная структура лага.
- 4. Если структура лага ведет себя непостоянно, то убывая, то возрастая, то это скорее всего полиномиальная структура лага.
- 5. Для DL-моделей с бесконечным лагом имеет место. Как правило геометрическая структура лага.



Примеры структуры лага DL-моделей

Для изучения структуры лага строят графики, где по оси абсцисс откладывается лаг запаздывания, а по оси ординат относительные коэффициенты DL-модели A,



Сложности оценки DL-моделей

- 1. Существенная мультиколлинеарность, за счет введения лаговых переменных.
- 2. При большой величине лага запаздывания увеличивается количество независимых лаговых переменных в модели, и как следствие уменьшается число степеней свободы, соответственно. Общая значимость модели падает.
- 3. Проблема автокорреляции остатков, характерная для DL-моделей, снижает эффективность оценок модели.
- Традиционный МНК при оценке DL-модели, как правило, дает недостоверные параметры.

Метод Алмон

Рассмотрим: $Y_t = \alpha_0 + \alpha_1 \cdot X_t + \alpha_2 \cdot X_{t-1} + \alpha_3 \cdot X_{t-2} + \dots + \alpha_{p+1} \cdot X_{t-p}$ Пусть лаг имеет полиномиальную структуру. То есть представлен полиномом степени k: $\alpha_i = c_0 + c_1 \cdot j + c_2 \cdot j^2 + ... + c_k \cdot j^k$

Тогда каждый из коэффициентов (1) можно представить в виде:

$$j=0: \alpha_{1} = c_{0}$$

$$j=1: \alpha_{2} = c_{0} + c_{1} + c_{2} + ... + c_{k}$$

$$j=2: \alpha_{3} = c_{0} + c_{1} \cdot 2 + c_{2} \cdot 2^{2} + ... + c_{k} \cdot 2^{k}$$
(2)

j=p:
$$\alpha_{p+1} = c_0 + c_1 \cdot p + c_2 \cdot p^2 + ... + c_k \cdot p^k$$

Подставим в исходное уравнение (1) выражения (2)

$$Y_{t} = \alpha_{0} + c_{0} \cdot X_{t} + (c_{0} + c_{1} + c_{2} + \dots + c_{k}) \cdot X_{t-1} + (c_{0} + c_{1} \cdot 2 + c_{2} \cdot 2^{2} + \dots + c_{k} \cdot 2^{k}) \cdot X_{t-2} + \dots + (c_{0} + c_{1} \cdot p + c_{2} \cdot p^{2} + \dots + c_{k} \cdot p^{k}) \cdot X_{t-p}$$

Метод Алмон

Перегруппируем:

$$Y_{t} = \alpha_{0} + c_{0} \cdot (X_{t} + X_{t-1} + \dots + X_{t-p}) + c_{1}(X_{t-1} + 2X_{t-2} + .3X_{t-3} + \dots + pX_{t-p}) + c_{2}(X_{t-1} + 4X_{t-2} + 9X_{t-3} + \dots + p^{2}X_{t-p}) + \dots + c_{k} \cdot (X_{t-1} + 2^{k}X_{t-2} + 3^{k}X_{t-3} + \dots + p^{k}X_{t-p})$$

Обозначим:
$$z_0 = X_t + X_{t-1} + ... + X_{t-p} = \sum_{j=0}^p X_{t-j}$$

$$z_1 = X_{t-1} + 2X_{t-2} + .3X_{t-3} + ... + pX_{t-p} = \sum_{j=0}^p j \cdot X_{t-j}$$
 (3)
$$z_2 = X_{t-1} + 4X_{t-2} + 9X_{t-3} + ... + p^2 X_{t-p} = \sum_{j=0}^p j^2 \cdot X_{t-j}$$

$$z_k = X_{t-1} + 2^k X_{t-2} + 3^k X_{t-3} + ... + p^k X_{t-p} = \sum_{j=0}^p j^k \cdot X_{t-j}$$

Подставив (3) в (1) получим:

$$Y_t = \alpha_0 + c_0 \cdot z_0 + c_1 \cdot z_1 + c_2 \cdot z_2 + \dots + c_k \cdot z_k$$

Процедура применения метода Алмон

- Определяется максимальный лаг запаздывания p в модели (1) 1.
- 2. Определяется степень полинома k, описывающий структуру лага модели
- Определяются по системе (3) новые переменные z_k 3.
- 4. Оценивается традиционным МНК новая модель:

$$Y_t = \alpha_0 + c_0 \cdot z_0 + c_1 \cdot z_1 + c_2 \cdot z_2 + \dots + c_k \cdot z_k$$

 $Y_t = \alpha_0 + c_0 \cdot z_0 + c_1 \cdot z_1 + c_2 \cdot z_2 + \ldots + c_k \cdot z_k$ По полученным коэффициентам c_i и соотношениям (2) определяют 5. параметры исходной модели $(1) - \alpha_J$

В случае, когда DL-модель имеет бесконечную отдачу, то есть бесконечный лаг запаздывания, то предполагают, что структура лага имеет геометрический вид, то есть воздействие лаговых значений переменной на результат уменьшается с увеличением величины лага в геометрической прогрессии. В этом случае к оценке параметров такой DL-модели применяют подход Койка.

Авторегрессионные модели с распределенными лагами

Определение: Модель, для которой в качестве регрессоров рассматриваются лаговые значения как объясняемой, так и объясняющих величин, называется авторегрессионной моделью с распределенными лагами ADL (p, q), где p — порядок авторегресси, равный максимальному лагу запаздывания в AR-структуре модели, а q — порядок распределенных лагов, равный максимальному лагу запаздывания в DL-структуре модели:

$$\begin{split} Y_t &= \theta + \alpha_1 \cdot Y_{t-1} + \alpha_2 \cdot Y_{t-2} + \dots + \alpha_p \cdot Y_{t-p} + \\ &+ \beta_0 \cdot X_t + \beta_1 \cdot X_{t-1} + \beta_2 \cdot X_{t-2} + \dots + \beta_q \cdot X_{t-q} + \varepsilon_t \end{split}$$

В общем случае предполагают, что Y_t и X_t - стационарны!

для модели ADL (1, 1)
$$Y_t = \theta + \alpha_1 \cdot Y_{t-1} + \beta_0 \cdot X_t + \beta_1 \cdot X_{t-1} + \varepsilon_t$$
 мультипликаторы (отклики) краткосрочные и долгосрочные выражаются как:
$$\beta_0^* \beta_1 + \alpha_1 \beta_0^* \alpha_1 \beta_1 + \alpha_1^2 \beta_0^*$$
 и т.д.

Модель коррекции ошибки

Рассмотри ADL (1, 1):
$$Y_t = \theta + \alpha_1 \cdot Y_{t-1} + \beta_0 \cdot X_t + \beta_1 \cdot X_{t-1} + \varepsilon_t$$
 Заменив: Y_t на $Y_{t-1} + \Delta Y_t$ и X_t на $X_{t-1} + \Delta X_t$

Получим: $\Delta Y_t = \theta + \beta_0 \cdot \Delta X_t - (1 - \alpha_1) \cdot Y_{t-1} + (\beta_0 + \beta_1) \cdot X_{t-1} + \varepsilon_t$ Перегруппировав получим:

$$\Delta Y_t = \beta_0 \cdot \Delta X_t - (1 - \alpha_1) \left[Y_{t-1} - \frac{\theta}{1 - \alpha_1} - \frac{\beta_0 + \beta_1}{1 - \alpha_1} X_{t-1} \right] + \varepsilon_t$$

<u>Определение.</u> Такое представление ADL-модели называется моделью коррекции ошибки ECM. $\theta = \beta_0 + \beta_1$

Выражение $Y_{t-1} = Y_{t-1} - \frac{\theta}{1-\alpha_1} - \frac{\beta_0 + \beta_1}{1-\alpha_1} X_{t-1}$ трактуется как отклонение от долгосрочного равновесия в момент времени t-1, так как долгосрочное равновесие определяется при γ =0. Поэтому γ >0, если Y_{t-1} превышает равновесное значение X_{t-1} .

Модель коррекции ошибки

Модель ЕСМ представляет текущее краткосрочное изменение Y в виде суммы мгновенного отклика на текущее (краткосрочное) изменение X и поправки на имевшее место отклонение от долгосрочного равновесия в предыдущий момент.

Для соблюдения условия стационарности Y_t требуется, чтобы $|\alpha_1| < 1$ Представление ADL(p, q) в виде ECM:

$$\Delta Y_{t} = \beta_{0} \cdot \Delta X_{t} - \sum_{i=1}^{p-1} \delta_{i} \Delta Y_{t-i} + \sum_{i=1}^{q-1} \gamma_{i} \Delta X_{t-i} + \alpha_{p}(1) \left[Y_{t-1} - \frac{\theta}{\alpha_{p}(1)} - \frac{\beta_{q}(1)}{\alpha_{p}(1)} X_{t-1} \right] + \varepsilon_{t}$$

В условиях, когда Y_t и X_t являются стационарными процессами к оценке параметров t ADL и t ECM моделей можно применять МНК (метод наименьших квадратов LS)

Здесь $\alpha_p(1)$ и $\beta_q(1)$ операторы линейной комбинации коэффициентов при AR и DE –частях модели ADL(p, q).

Причинность по Гренджеру

Если X_t - причина по Гренджеру для Z_t , то это означает, что между этими процессами есть причинно-следственная связь.

Для тестирования причинности по Гренджеру строят регрессию Z_t на его собственные предыдущие значения и на предыдущие значения процесса X_t

$$Z_t = \alpha_0 + \sum_{i=1}^{\infty} \alpha_i Z_{t-i} + \sum_{i=1}^{\infty} \beta_i X_{t-i} + \varepsilon_t$$

Затем проверяем гипотезу

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$

 $H_1: \beta_1^2 + \beta_2^2 + ... + \beta_k^2 > 0$

 H_1 : $\beta_1^2 + \beta_2^2 + ... + \beta_k^2 > 0$ Поверяют гипотезу на основе расчета F-статистик, которую сравнивают с критическими значениями Фишера.

Если нулевая гипотеза отвергается, то X_t является причиной для Z_t

Случаи взаимодействия временных рядов

- 1. Экономические переменные, связанные DL или ADL моделями, стационарны.
- 2. Экономичесие переменные нестационарны и относятся к TS- процессам, тогда их взаимодействие можно учитывать в виде регрессии, дополнительно включив переменную времени t (метод отклонения от трендов).
- 3. Экономические переменные нестационарны и DL или ADL модели строятся на их стационарных разностях Δx_t и Δy_t .
- 4. Переменные нестационарные, но относятся к DSпроцессам и имеют одинаковый порядок интеграции, можно построить для них регрессию при условии их коинтегрируемости.

Коинтеграция временных рядов

Определение: Пусть x_t и y_t временные ряды первого порядка интеграции I(1). Если существуют такие коэффициенты (α, β) , что линейная комбинация процессов x_t и y_t : $Z_t = \alpha \cdot x_t + \beta \cdot y_t$ является стационарным процессом, то есть интеграции I(0), то ряды x_t , y_t называются коинегрированными. А вектор компонент (α, β) называется коинтегрирующим вектором.

Так оба процесса — есть DS — процессы, следовательно, они имеют стохастические трены. коинтеграция означает, что стохастические тренды обоих процессов ведут себя одинаково.

Коинтегрирующие соотношение соответствует тому, что между величинами есть долгосрочное равновесие.

ЕСМ-модель $\Delta y_t = \alpha \cdot \Delta x_t + \beta \cdot (y_{t-1} - \gamma x_{t-1}) + v_t$ связывает между собой стационарные величины Δx_t и Δy_t , а также коинтегрирующее соотношение.

Поэтому, если процессы x_t и y_t не являются стационарными, но являются коинтегрируемыми, то между ними можно построить ADL и DL модели.

Процедура Ингла-Гренджера

- 1. Определяют, являются ли процессы X_t и Y_t интегрируемыми первого порядка.
- 2. Строят обычную регрессию X_t на Y_t методом наименьших квадратов.
- 3. Проверяют остатки регрессии на стационарность с помощью теста Дики-Фуллера, но сравнивают DF-статистику с поправленными значениями, отличными от критических значений Мак-Кинона.
- 4. Делают выводы: если остатки стационарны то исходные ряды X_t и Y_t коинтегрированны, а построенная регрессия является коитегрирующей.

Если согласно процедуре имеется коитеграция, то в построенной регрессии можно учесть не только долгосрочное равновесие, но и за счет введения дополнительного регрессора — коинтегрирующего соотношения в предыдущий момент времени. То есть построить модель ЕСМ.