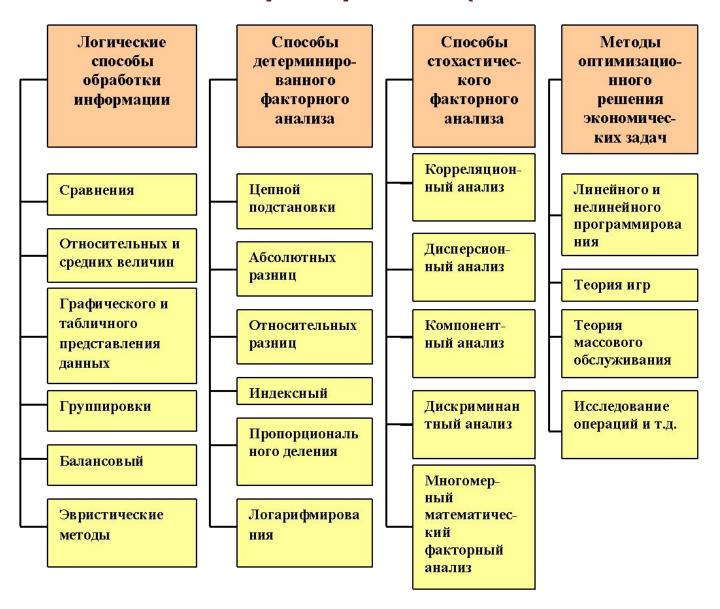
МЕТОД И МЕТОДИКА ЭКОНОМИЧЕСКОГО АНАЛИЗА

- Понятие метода и методики экономического анализа.
- 2. Методика факторного анализа.
- 3. Классификация факторов в анализе хозяйственной деятельности.
- 4. Моделирование взаимосвязей в детерминированном факторном анализе.

Понятие метода и методики экономического анализа

- Под методом науки в широком смысле понимают способ исследования своего предмета.
- Метод совокупность способов, приёмов, средств познания, т.е. это технология исследования.
- Анализ базируется на диалектическом методе познания. Основные его черты:
- разработка системы показателей;
- изучение экономических явлений в движении;
- определение причинно-следственных связей и т.д.

Методика


- система правил и требований, гарантирующих эффективное приложение метода.
- В экономическом анализе методика
 представляет собой совокупность аналитических
 способов и правил исследования экономических
 явлений и процессов хозяйственной деятельности,
 подчиненных достижению цели анализа.
- Различают общую и частные методики анализа.
- Общая методика система исследований, которая одинаково используется при изучении разных объектов экономического анализа в различных отраслях экономики.
- **Частные методики** конкретизируют общую относительно определенных отраслей экономики, типов производства, объектов исследования, видов анализа.

Этапы методики экономического анализа:

- определение цели, постановка задач, определение потребителей информации;
- 2. выбор системы показателей;
- 3. выбор способов, технических приёмов и средств анализа;
- 4. подготовка источников информации и непосредственное проведение анализа;
- 5. интерпретация результатов.

 В качестве важнейшего элемента методики анализа хозяйственной деятельности выступают технические приемы и способы анализа (инструментарий анализа).

Способы и методы анализа хозяйственной деятельности предприятии (по Г.В. Савицкой)

Методика факторного анализа

- Все явления и процессы хозяйственной деятельности предприятия находятся во взаимосвязи, взаимозависимости и взаимообусловленности.
- Одни из них непосредственно связаны между собой, другие – косвенно.
- Каждое явление можно рассматривать и как причину, и как результат.
- Если показатель рассматривается как результат действия одной или нескольких причин и выступает в качестве объекта исследования, то при изучении взаимосвязей его называют результативным показателем.
- Показатели, определяющие поведение результативного показателя, называются факторными.
- Каждый результативный показатель зависит от многих факторов.

Фактор

причина изменения чего-то, а в анализе причина изменения результативного показателя.

Факторный анализ

методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

Типы факторного анализа:

- детерминированный
 (функциональный) и стохастический
 (корреляционный);
- прямой (дедуктивный) и обратный (индуктивный);
- одноступенчатый и многоступенчатый;
- статический и динамический;
- ретроспективный и перспективный (прогнозный).

Детерминированный факторный анализ

(причинно-следственный, конкретная причина вызывает конкретное следствие)- связь между факторами и результатом полная, т.е. изменение фактора даст однозначное изменение результата (результат можно представить в виде произведения, частного или алгебраической суммы (+/-) факторов);

Стохастический (вероятностный)

связь между факторами неполная, т.е. конкретное изменение фактора может дать несколько изменений результата (результат нельзя представить в виде простой математической взаимосвязи факторов).

- Прямой факторный анализ исследование ведется дедуктивным способом – от общего к частному.
- Обратный факторный анализ исследование ведется от частных, отдельных факторов к обобщающим.
- Одноступенчатый факторный анализ (анализируются факторы первого уровня).
- **Многоступенчатый** (анализируются факторы второго и последующего уровней).

- Статический факторный анализ
 применяется при изучении влияния
 факторов на результативные показатели на
 определенную дату.
- Динамический факторный анализ
 представляет собой методику исследования
 причинно-следственных связей в динамике.
- Ретроспективный факторный анализ изучает причины изменения результатов хозяйственной деятельности за прошлые периоды.
- Перспективный факторный анализ исследует поведение факторов и результативных показателей в перспективе.

Этапы факторного анализа:

- 1. отбор факторов для анализа;
- классификация и систематизация факторов;
- 3. моделирование взаимосвязи между результатом и факторами;
- 4. расчёт влияния факторов на результат (непосредственно факторный анализ);
- 5. работа с факторной моделью.

Классификация факторов в анализе хозяйственной деятельности

Классификационный признак	Группы факторов
1.По своей природе	Природно-климатические
	Социально-экономические
	Производственно-экономические
2.По степени воздействия на результаты	Основные
	Второстепенные
3.По отношению к объекту исследования	Внутренние
	Внешние
4.По зависимости от коллектива	Объективные
	Субъективные
5.По степени распространенности	Общие
	Специфические
6.По времени действия	Постоянные
	Переменные
7.По характеру действия	Экстенсивные
	Интенсивные
8.По свойствам отражаемых явлений	Количественные
	Качественные
9.По своему составу	Простые
	Сложные
10.По уровню соподчиненности (иерархии)	Первого порядка
	Второго порядка и т.д.
11.По возможности измерения влияния	Измеряемые
	Неизмеряемые
·	·

Классификация факторов: 1. По своей природе:

- Природно-климатические факторы оказывают большое влияние на результаты хозяйственной деятельности в таких отраслях, как сельское и лесное хозяйство, добывающая промышленность, строительство и др.
- Социально-экономические факторы (жилищные условия работников, организация культурно-массовой, спортивной, оздоровительной работы и др.) способствуют более полному использованию производственных ресурсов предприятия и повышению эффективности его работы.
- Производственно-экономические факторы определяют полноту и эффективность использования производственных ресурсов предприятия и конечные результаты его деятельности.

2. По степени воздействия на результаты:

- Основные факторы оказывают решающее воздействие на результативный показатель.
- Второстепенные не оказывают решающего воздействия на результаты хозяйственной деятельности в сложившихся условиях.

3. По отношению к объекту исследования:

- Внутренние факторы зависят от деятельности предприятия.
- Внешние не зависят от деятельности предприятия.

4.По зависимости от коллектива:

- Объективные факторы не зависят от воли и желания людей.
- Субъективные зависят от деятельности физических и юридических лиц.

5.По степени распространенности:

- Общие факторы действуют во всех отраслях экономики.
- Специфические факторы их действия проявляются в условиях отдельной отрасли экономики или предприятия.

6. По времени действия:

- Постоянные факторы оказывают влияние на изучаемое явление беспрерывно на протяжении всего времени.
- Переменные факторы проявляются периодически.

7. По характеру действия:

- Экстенсивные факторы связаны с вовлечением дополнительного количества факторов без изменения их качества, производительности (например, увеличение численности рабочих → увеличение объёмов производства без изменения производительности рабочих и т.п.).
- Интенсивные факторы связаны с более рациональным, производительным, качественным использованием уже имеющихся ресурсов (например, рост производительности труда → увеличение объёмов производства продукции без увеличения численности работников и т.п.).

8. По свойствам отражаемых явлений:

- Количественные факторы выражают количественную определенность явлений.
- Качественные факторы определяют внутренние качества, признаки и особенности изучаемых объектов (производительность труда, качество продукции и др.).

9. По своему составу:

- Простые факторы не раскладываются на составные элементы (например, количество рабочих дней в отчетном периоде).
- Сложные факторы состоят из нескольких элементов (например, производительность труда).

10.По уровню соподчиненности (иерархии):

- Факторы первого уровня подчинения непосредственно влияют на результативный показатель.
- Факторы второго и последующих уровней определяют результативный показатель косвенно.
- II. По возможности измерения влияния:
- Измеряемые факторы их воздействие на результативный показатель может быть количественно измерено.
- **Неизмеряемые** их влияние на результаты деятельности предприятий не поддается непосредственному измерению (например,

Моделирование взаимосвязей в детерминированном факторном анализе

- Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину.
- Модель аналог реального мира, который может быть построен и исследован с помощью различных средств, начиная от словесного описания и кончая использованием системы математических уравнений или имитации на компьютере.
- Моделирование − это метод, при помощи которого такие модели создаются.
- В анализе модель это взаимосвязь исследуемого показателя с факторными в форме конкретного математического уравнения.

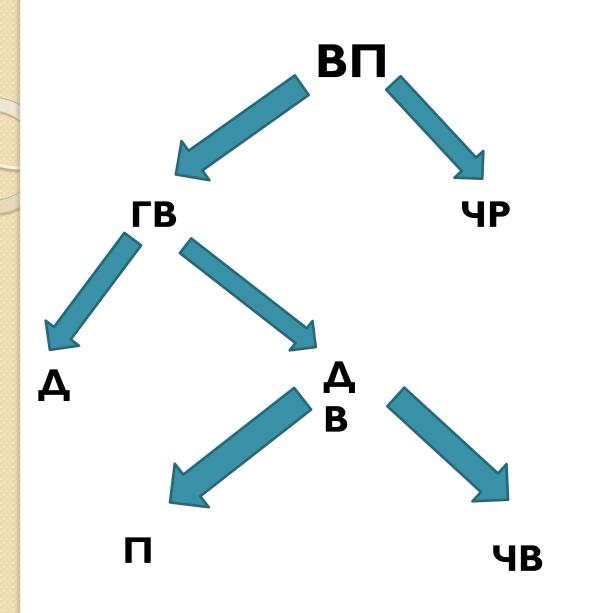
Правила моделирования:

- факторы и модели должны реально существовать;
- факторы должны находиться в причинноследственной связи с результатом;
- все показатели должны быть количественно измеримы;
- модель должна обеспечивать возможность измерения отдельных факторов;
- в модель сначала включаются количественные факторы, а затем качественные.

Типы моделей при детерминированном факторном анализе:

- Аддитивные модели (результат сложение и/или вычитание факторов)
- Мультипликативные модели (результат – перемножение факторов)
- Кратные модели (результат частное от деления факторов)
- Смешанные
 (комбинированные) модели
 (чтобы получить результат с факторами
 надо произвести несколько
 математических действий)

Способы преобразования детерминированных факторных моделей:


- **способ формального разложения** (разложение показателей модели на составные элементы, используется в аддитивных и мультипликативных моделях);
- способ удлинения (применяется в кратных моделях и предусматривает изменение числителя модели путем замены одного или нескольких факторов на сумму однородных показателей, при этом знаменатель в модели остается неизменным);
- **способ расширения** (изменение исходной кратной модели путем умножения числителя и знаменателя дроби на один или несколько новых показателей);
- способ сокращения (изменение исходной кратной модели путем деления числителя и знаменателя на один или несколько показателей).

Пример способа формального разложения:

- Прибыль = Выручка Себестоимость
- Прибыль = Выручка (МЗ + ОТ + А +НР),
 где МЗ материальные затраты,
- ОТ оплата труда,
- А амортизация,
- HP накладные расходы.

Моделирование мультипликативных факторных систем осуществляется аналогично путём расчленения исходной системы на факторы сомножители:

- BΠ = ЧР × ГВ,
- $B\Pi = \Psi P \times \Delta \times \Delta B$,
- ВП = ЧР × Д × П × ЧВ,
- где ВП валовая продукция,
- ЧР среднегодовая численность работников,
- ГВ среднегодовая выработка одного работника,
- Д количество дней, отработанных одним работником за год,
- ДВ среднедневная выработка одного работника,
- П продолжительность рабочей смены в часах,
- ЧВ выработка за час одного работника.

Пример способа удлинения

Себестоимость единицы продукции = Сумма затрат на производство продукции / Объём выпуска

C = M3 / V + OT/ V + A / V + HP / V = материалоёмкость продукции + трудоёмкость + фондоёмкость + уровень накладных затрат.

Пример способа расширения

 показатель производительности труда (годовой выработки продукции одним работником в стоимостном выражении) можно представить в виде следующей модели:

$$\Gamma B = \frac{BII}{4P}$$

 Если умножить и числитель, и знаменатель на показатель количества отработанных дней всеми работниками (Д), то уже получится новая модель годовой выработки:

$$\Gamma B = \frac{B\Pi \times \mathcal{I}}{\Psi P \times \mathcal{I}} = \frac{B\Pi}{\mathcal{I}} \times \frac{\mathcal{I}}{\Psi P} = \mathcal{I} \times \mathcal{I}B$$

- д количество отработанных дней одним работником
- ДВ среднедневная выработка.

 Показатель фондоотдачи рассчитывается следующим образом:

$$\Phi O = \frac{OC}{BII}$$

 Если мы хотим, например, создать факторную модель и включить в неё фактор «труд», то нужно и числитель, и знаменатель данной модели умножить на показатель численности работников:

$$\Phi O = \frac{B\Pi \times AB}{OC \times AB} = \frac{B\Pi}{AB} \times \frac{AB}{OC} = \frac{B\Pi}{AB} = \frac{B\Pi}{AB}$$

- ФВ фондовооружённость,
- ГВ годовая выработка продукции одним работником.

Пример способа сокращения

• Уровень рентабельности собственного капитала рассчитывается по формуле:

$$P = \frac{HII}{CK}$$

 Для более детального анализа можно преобразовать данную модель, разделив и числитель, и знаменатель на выручку от реализации (В):

$$P = \frac{\Pi / B}{CK/B} = \frac{\Pi}{B} \times \frac{B}{CK}$$

 Получилось два новых фактора: чистая рентабельность продаж и оборачиваемость собственного капитала, которые с разных позиций характеризуют хозяйственную деятельность предприятия. На этом процесс моделирования не заканчивается и его можно продолжить. Например, второй фактор можно разложить на два составляющих способом сокращения. Для этого нужно и числитель, и знаменатель разделить на величину активов (А):

Оборачиваемость
$$CK = \frac{B/A}{CK/A} = \frac{B}{A} \times \frac{A}{CK}$$
 Уже получилось два училора соботь стана.

Уже получимось два фактора собственной капитала:
 оборачиваемость активов и коэффициент капитализации (плечо финансового рычага в одной из модификаций). А в конечном итоге исходная модель имеет вид:

$$P = \frac{\Pi}{B} \times \frac{B}{A} \times \frac{A}{CK} - \phi$$
ормула Дюпона.

Рентабельность собственного капитала = Рентабельность продаж *
 Оборачиваемость активов * Финансовый леверидж.

Способы факторных расчётов.

- цепных подстановок
- абсолютных разниц
- относительных разниц
- индексный
- пропорционального деления
- долевого участия
- интегральный
- логарифмирования.

Способ цепных подстановок

Включает в себя следующие этапы:

- 1. Определяются базисное и фактическое значение результативного показателя.
- 2. Определяется ряд условных величин путём постепенной последовательной (по цепочке) замены <u>базисной</u> величины каждого фактора на <u>фактическую</u>. Условная величина результативного показателя отражает, каков был бы результативный показатель, если бы один фактор изменился, а другие остались низменными. Количество таких условных показателей будет равно <u>n-I</u>, где n это количество факторов в модели.
- 3. Определяется влияние факторов на результативный показатель. Для этого последовательно рассчитываются разности между полученными в п. 1,2 рядом стоящими показателями (снизу вверх).
- 4. Рассчитывается общее отклонение результативного показателя (за счёт всех факторов).
- 5. Проводится проверка: общее отклонение результативного показателя должно быть равно сумме отклонений за счёт каждого фактора.

Расчёт базисного, условных и фактического значений показателей (1,2 этапы)

$X = A \times B \times C$	Факторы		
	A	В	C
$X_{\mathbf{B}} = \mathbf{A}_{\mathbf{B}} \times \mathbf{B}_{\mathbf{B}} \times \mathbf{C}_{\mathbf{B}}$	базис	базис	базис
$X_{\text{yc 1}} = A_{\Phi} \times B_{E} \times C_{E}$	отчёт	базис	базис
$X_{yc} 2 = A_{\Phi} \times B_{\Phi} \times C_{E}$	отчёт	Тарто	базис
$X_{\Phi} = A_{\Phi} \times B_{\Phi} \times C_{\Phi}$	отчёт	[*] ***********************************	отчёт

Расчёт влияния факторов (3 этап)

$$\Delta X_A = X_{yc1} - X_B$$

$$\Delta X_B = X_{yc2} - X_{yc1}$$

$$\Delta X_C = X_{\Phi} - X_{yc2}$$

 Далее следует рассчитать абсолютное отклонение результативного показателя (его изменение за счёт воздействия всех трёх факторов) (4 этап):

$$\Delta X$$
общ = $X \Phi$ - $X Б$

Конечным этапом анализа является проверка расчётов, которая заключается в сравнении общего отклонения с суммой отклонений за счёт влияния каждого фактора (5 этап) (они должны быть равны друг другу):

 ΔX общее = $\Delta X_A + \Delta X_B + \Delta X_C$

Способ абсолютных разниц

- Применяется в мультипликативных и аддитивномультипликативных моделях.
- Методика: Влияние факторов на результат рассчитывается умножением абсолютной разницы исследуемого фактора на базисную величину факторов, стоящих справа от него в модели, и фактическую величину факторов, стоящих слева от него в модели.

Математическая запись для трехфакторной мультипликативной модели X=A×B×C:

$$\Delta XA = \Delta A \times BE \times CE, \Delta A = A\Phi - AE$$

$$\Delta XB = A\Phi \times \Delta B \times C_{5}, \Delta B = B\Phi - B_{5}$$

$$\Delta XC = A\Phi \times B\Phi \times \Delta C, \Delta C = C\Phi - CE$$

Математическая запись для мультипликативноаддитивной модели: X=A×(B-C).

 $\Delta X_A = \Delta A \times (B_{5} - C_{5}), \Delta A = A_{\Phi} - A_{5}$

 $\Delta X_B = A_{\Phi} \times \Delta B, \Delta B = B_{\Phi} - B_{\Phi}$

 $\Delta X_C = A_{\Phi} \times (-\Delta C), \Delta C = C_{\Phi} - C_{\Phi}$

Способ относительных разниц

 Применяется в мультипликативных и аддитивно-мультипликативных моделях.

Математическая запись для трехфакторной мультипликативной модели X=A×B×C:

$$\Delta X_A = X_B \times \Delta A/A_B$$

$$\Delta X_B = [X_B + \Delta X_A] \times \Delta B/B_B$$

$$\Delta X_C = [X_B + \Delta X_A + \Delta X_B] \times \Delta C/C_B$$

Индексный метод

Математическая запись для двухфакторной мультипликативной модели X=A×B:

$$\Delta X_{A} = \sum (A_{\Phi} \times B_{B}) / \sum (A_{B} \times B_{B})$$
$$\Delta X_{B} = \sum (A_{\Phi} \times B_{\Phi}) / \sum (A_{\Phi} \times B_{B})$$

Интегральный способ

Применяется в мультипликативных, кратных и смешанных моделях.

 Математическая запись для трёхфакторной мультипликативной модели X=A×B×C:

 ΔX A = $\frac{1}{2}$ × ΔA × (B_δ × CΦ + BΦ × C_δ) + $\frac{1}{3}$ × ΔA × ΔB × ΔC

 $\Delta X_B = \frac{1}{2} \times \Delta B \times (A_b \times C_{Φ} + A_{Φ} \times C_b) + \frac{1}{3} \times \Delta A \times \Delta B \times \Delta C$

 $\Delta X_{C} = \frac{1}{2} \times \Delta C \times (A_{B} \times B_{\Phi} + A_{\Phi} \times B_{B}) + \frac{1}{3} \times \Delta A \times \Delta B \times \Delta C$

Способ логарифмирования

 Математическая запись для трёхфакторной мультипликативной модели X=A×B×C:

```
ΔXA = ΔΧοδщ× Ig(AΦ : Aь) / Ig (XΦ: Xь)
ΔXB = ΔΧοδщ× Ig(BΦ : Вь) / Ig (ХФ: Хь)
ΔXC = ΔΧοδщ× Ig(CΦ : Сь) / Ig (ХФ: Хь)
```

- По сути, существует три способа факторных расчётов:
 - I) способ цепных подстановок;
- 2) интегральный способ;
- 3) способ логарифмирования.

Их принципиальное отличие состоит в следующем. Факторы действуют на результативный показатель не по отдельности, а совместно, сообща. Поэтому кроме отдельного, чистого влияния факторов, выделяют совместное влияние факторов. Такое влияние ещё называют систематическим отклонением или систематической ошибкой. Все эти вышерассмотренные способы отличаются «точкой зрения» на систематическую ошибку.

Принципиальные отличия способов следующие:

- I) при использовании способа цепных подстановок совместное влияние факторов присоединяется к фактору, стоящему в модели последним;
- 2) при использовании интегрального способа совместное влияние фактора делится поровну между всеми факторами, входящими в модель;
- 3) при использовании способа логарифмирования совместное влияние факторов делится между ними пропорционально их «чистому» влиянию.

