Государственное бюджетное образовательное учреждение высшего профессионального образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения Российской Федерации

Кроссинговер

Подготовил студент 471 группы МБФ Василий Цветков Преподаватель Билева Джемма Серафимовна

Сцепленное наследование у душистого горошка

(У. Бэтсон и Р. Пеннет, 1906)

Р – пурпурные цветки

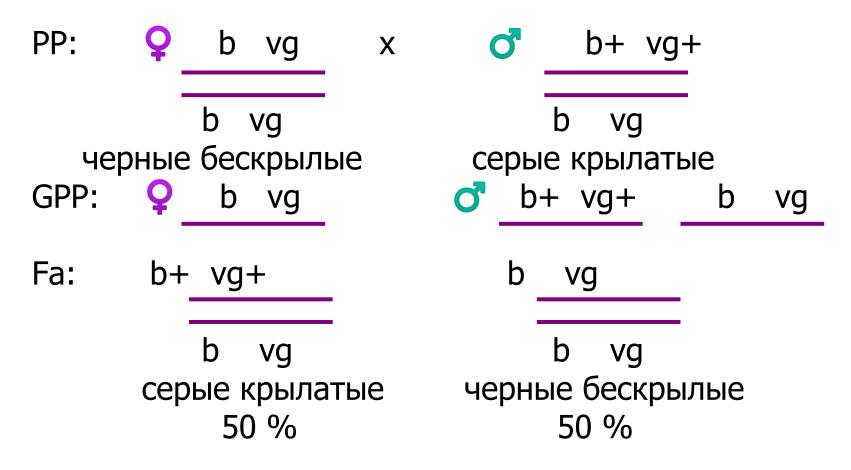
р – красные цветки

L – удлиненная пыльца

I – округлая пыльца

Р РРLL х ppll пурпурные цветки красные цветки удлиненная пыльца округлая пыльца F₁ РрLl пурпурные цветки удлиненная пыльца

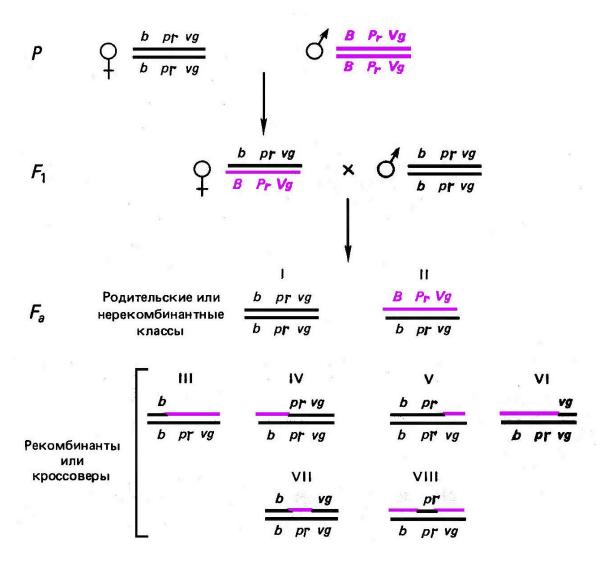
F₂ P- I- 69,5%; P- II 5,6%; pp L- 5,6%; ppII 19,3% пурпурные цветки пурпурные цветки красные цветки красные цветки удлиненная пыльца округлая пыльца


Кроссинговер

Как и в других законах наследственности, в законе о сцеплении генов нашли исключения.

Т.Х. Морган в 1911 году обнаружил, что в гомологичной паре хромосом регулярно происходит обмен генами.

В своей лаборатории он скрещивал линии дрозофил, содержащих гены b и vg (b - черное тело, vg - зачаточные крылья)


Генетические доказательства кроссинговера

Частота кроссинговера

- В России для частоты кроссинговера, равной 1% использовался термин «Морганида» (В честь Т.Х. Моргана)
- В США долгое время использовали термин «единица карты»
- Начиная с 80+ годов прошлого века повсеместно используется термин «сантиморган»

Одинарный и множественный кроссинговер

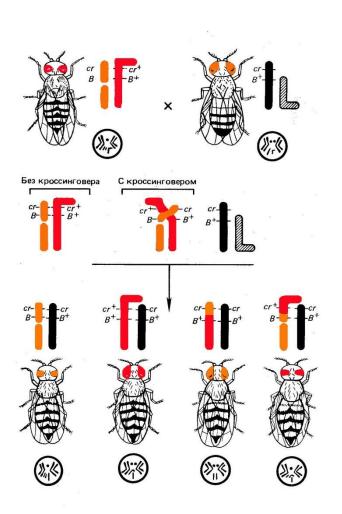
Интерференция

- Установлено, что в опыте процент двойных кроссоверных особей часто оказывается ниже теоретически ожидаемого
- Одной из причин, снижающих наблюдаемую величину кроссинговера, оказывается процесс подавления кроссинговера вблизи пункта, где обмен уже произошел
- Это явление носит название интерференции

Измерение интерференции

Коэффициент коинцедентности (совпадения)

$$C = \frac{\text{Наблюдаемые кроссоверы}}{\text{Ожидаемые кроссоверы}}$$

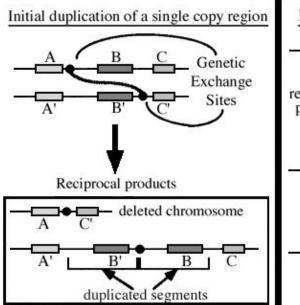

Величина интерференции

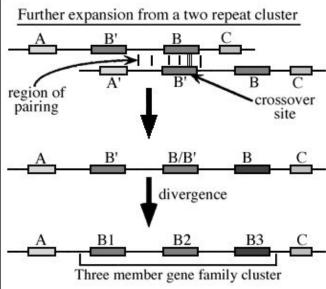
$$I = 1 - C$$

Цитологические доказательства кроссинговера

- Впервые цитологическое доказательство перекреста и обмена участками хромосом было получено на кукурузе английскими исследователями Б. Мак-Клинток и Г. Крейтоном и на дрозофиле немецким генетиком К. Штерном в 30-х годах нашего века
- В опытах на дрозофиле К. Штерн (Curt Jacob Stern) использовал мутантных самок, одна из X-хромосом которых была укороченной, а вторая имела форму буквы «Г» за счет прикрепленного к ней участка У-хромосомы

Опыт Штерна (1931)




Укороченная Ххромосома содержит доминантный ген В (полосковидные глаза) и рецессивный ген cr коричневой окраски глаз. Вторая Ххромосома несет гены круглых (рецессивный, В+) и красных (доминантный cr+) глаз

Неравный кроссинговер

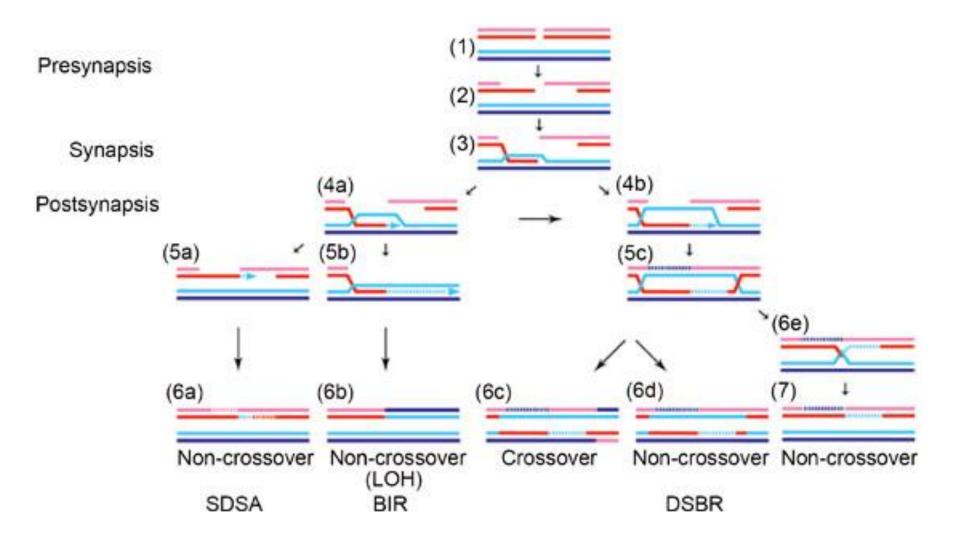
- Обычно обмен участками между хроматидами гомологичных хромосом осуществляется в строго идентичных, тождественных точках, благодаря чему при кроссинговере происходит обмен равными участками хромосом
- В очень редких случаях наблюдаются разрывы в несимметричных точках, и хроматиды обмениваются неравными участками
- Такое явление называют неравным кроссинговером
- Вследствие неравного кроссинговера участок одной из гомологичных хромосом может удвоиться или утроиться, а в противоположной хромосоме образуется его нехватка.

Опыт Стёртеванта (1925)

Митотический кроссинговер

- Открытие митотической рекомбинации было совершено Куртом Штерном в 1936 году
- Он исследовал дрозофил, являвшихся гетерозиготами по двум генам, находящихся на одной X-хромосоме и определяющих легко регистрируемые признаки: цвет тела и форму щетинок

Опыт Штерна (1936)



Рецессивный аллель первого гена у (yellow) даёт жёлтую окраску тела, рецессивный аллель sn (singed) — опалённые щетинки

- Митотическая рекомбинация происходит в течение интерфазы
- Было высказано предположение, что рекомбинация происходит в течение G1-фазы, когда хромосома ещё не удвоена вследствие репарации путём гомологичной рекомбинации двунитевых повреждений ДНК
- Однако этому противоречит то, что репарация путём гомологичной рекомбинации происходит в основном после репликации

Модели хромосомной рекомбинации

- Рекомбинация путем двойного слияния Холлидея
- Рекомбинация за счет синтеззависимого отжига цепи
- Рекомбинация индуцированная разрывом цепи

Xuan Li and Wolf-Dietrich Heyer Homologous recombination in DNA repair and DNA damage tolerance Cell Research (2008) 18:99–113

Факторы, влияющие на кроссинговер

- Внешние условия (температура и др)
- Стадии развития
- Пол
- Генотип (определенные гены или структурные изменения хромосом)