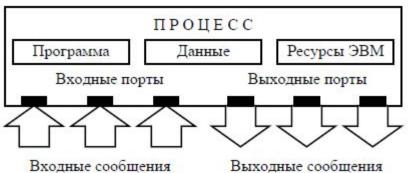
Компьютерные сети, Интернет и мультимедиа технологии

Основы сетей передачи данных

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛВС) Эталонная модель взаимодействия открытых систем (модель OSI).

- открытость системы возможность включения в состав сети однородных и неоднородных дополнительных абонентских систем, узлов коммутации и линий связи без существенного изменения аппаратных и программных средств существующих компонентов сети;
- **гибкость системы** сохранение основных свойств и технических характеристик сети ЭВМ при изменении структуры в результате выхода из строя отдельных абонентских систем, узлов коммутации и линий связи, или при изменении их типов и численного состава;
- эффективность системы обеспечение требуемого качества обслуживания пользователей сети ЭВМ при заданном уровне ограничения затрат.


Именно подход на основе декомпозиции к проблеме построения сетей ЭВМ любой сложности был разработан в начале 80-х годов XX века Международной организацией по стандартизации (ISO – International Organization for Standardization) и представлен в виде «Эталонной модели взаимодействия открытых систем» (модель OSI – Open System Interconnection), определяющей архитектуру построения различных компьютерных сетей.

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛВС) Эталонная модель взаимодействия открытых систем (модель OSI).

Назначение уровней и протоколов модели OSI

Уровни модели OSI	Назначение уровней и протоколов модели OSI
7. Прикладной	Обеспечивает прикладным процессам пользователя средства доступа к сетевым ресурсам; является интерфейсом между программами пользователя и сетью. Имеет интерфейс с пользователем.
6. Представительный	Устанавливает стандартные способы представления данных, которые удобны для всех взаимодействующих объектов прикладного уровня. Имеет интерфейс с прикладными программами.
5. Сеансовый	Обеспечивает средства, необходимые сетевым объектам для организации, синхронизации и административного управления обменом данных между ними.
4. Транспортный	Обеспечивает надежную, экономичную и «прозрачную» передачу данных между взаимодействующими объектами сеансового уровня.
3. Сетевой	Обеспечивает маршрутизацию передачи данных в сети, уста- навливает логический канал между объектами для реализации протоколов транспортного уровня.
2. Канальный	Обеспечивает непосредственную связь объектов сетевого уровня, функциональные и процедурные средства ее поддержки для эффективной реализации протоколов сетевого уровня.
1. Физический	Формирует физическую среду передачи данных, устанавливает соединения объектов сети с этой средой.

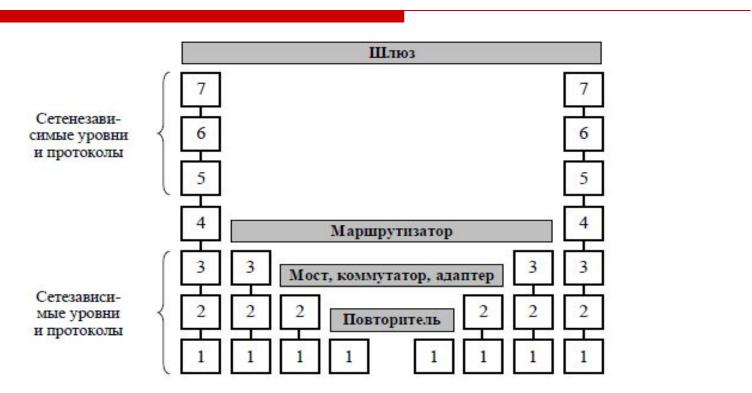
- •Сетевая архитектура это общая логическая и техническая организация сетей ЭВМ, представленная в виде совокупности сетевых аппаратных и программных решений, методов доступа к ресурсам сети и используемых для этого протоколов.
- •Процесс это динамический объект, представляющий собой целенаправленный акт обработки данных. Процесс порождается программой или пользователем и связан с входными или выходными данными и необходимыми вычислительными ресурсами.

•Ввод и вывод данных из процесса производится в форме сообщений.

Сообщение – это последовательность данных, имеющих законченное смысловое значение. Ввод сообщений в процесс и вывод из процесса производится через логические (программно – организованные) точки, называемые соответственно входными и выходными портами.

•Связь между объектами смежных уровней одной системы регламентируется межуровневым интерфейсом.

Интерфейс представляет собой формализованные правила, определяющие набор сервисов, предоставляемых данным уровнем соседнему уровню, последовательность и формат сообщений, которыми обмениваются смежные уровни одной системы


•Организация взаимодействия между одинаковыми уровнями различных систем определяется соответствующим протоколом. **Протокол** представляет собой формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но принадлежащие разным системам.

Таким образом, протокол и интерфейс выражают одни и те же понятия, но распространяются на разные области действия: протоколы определяют правила взаимодействия объектов одного уровня в разных системах сети, а интерфейсы – объектов соседних уровней в одной системе.

Иерархически организованный набор протоколов, достаточный для организации взаимодействия систем в сети, называется **стеком коммуникационных протоколов.**

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней обычно реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней – только программными средствами. Все уровни модели OSI и соответствующие им протоколы подразделяются на две группы:

сетезависимые уровни и протоколы; сетенезависимые уровни и протоколы.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от характеристик технических средств непосредственной передачи сообщений.

Разработкой и совершенствованием стандартов построения и функционирования сетей ПД занимаются многие международные и национальные организации. Поэтому в настоящее время в компьютерных сетях используется несколько разновидностей стеков коммуникационных протоколов.

К наиболее популярным и широко используемым в настоящее время относятся следующие стеки:

- стек OSI;
- стек TCP / IP;
- стек IPX / SPX;
- стек NetBIOS / SMB.

Стек протоколов OSI

Особенностью данного стека протоколов является его полное соответствие модели OSI, он включает спецификации для всех семи уровней взаимодействия, определенных в этой модели и представляет собой набор конкретных протоколов.

Реализация протоколов стека OSI требует значительных вычислительных ресурсов, поэтому они ориентированы на сети с мощными компьютерами.

Стек протоколов OSI распространен пока мало, однако является наиболее перспективным международным стандартом, независящим от конкретных производителей сетевого оборудования.

Стек протоколов TCP / IP

Стек протоколов TCP / IP (Transmission Control Protocol / Internet Protocol) был разработан и внедрен в сетевые структуры в начале 80-х годов XX века по инициативе Министерства обороны США. В настоящее время данный стек протоколов широко используется для организации взаимодействия абонентских систем в Internet и многих корпоративных сетях.

Основу стека составляют протоколы IP и TCP, давшие ему название. Эти протоколы, в соответствии с моделью OSI, относятся к сетевому (IP) и транспортному (TCP) уровням. Протокол IP обеспечивает передачу информационных пакетов по составной сети, а TCP гарантирует надежность их доставки. В настоящее время стек TCP / IP является одним из самых распространенных стеков транспортных протоколов глобальных, региональных и корпоративных сетей ПД

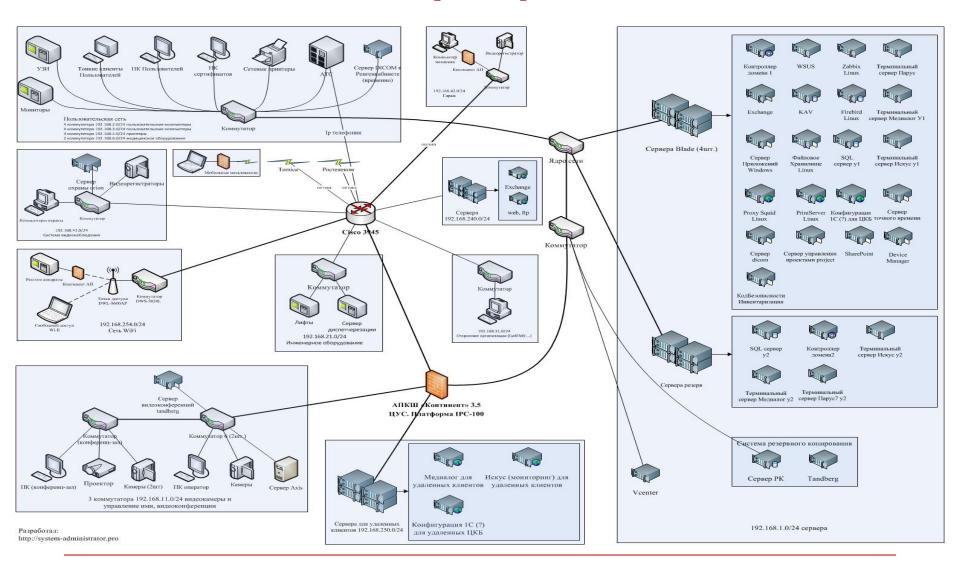
Стек протоколов IPX / SPX

Стек протоколов IPX / SPX (Internetwork Packet eXchange / Sequenced Packet eXchange) разработан фирмой Novell в начале 80-х годов XX века для сетевой операционной системы NetWare. Данная операционная система до сих пор широко используется в компьютерных сетях, однако, в последнее время интенсивно вытесняется сетевыми операционными системами MS Windows.

Протоколы стека IPX / SPX ориентированы на работу в локальных сетях небольших размеров на основе компьютеров с ограниченными вычислительными ресурсами.

Стек протоколов NetBIOS / SMB

Стек протоколов NetBIOS / SMB (Network Basic Input/Output System /Server Message Block) разработан фирмами IBM и Microsoft в середине 80-х годов XX века. Протоколы NetBIOS и SMB, давшие название стеку, соответствую верхним уровням модели OSI. Протокол NetBEUI реализует функции сетевого, транспортного и сеансового уровней модели OSI, не требует больших вычислительных ресурсов, наиболее эффективен в сетях, объединяющих не более 200 абонентских систем. Протокол SMB выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуются сетевые службы печати и передачи сообщений между приложениями, а также файловая служба.


Локальная вычислительная сеть представляет собой систему распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, НИИ, вузов, банков, офисов и т.п., это система взаимосвязанных и распределенных на фиксированной территории средств передачи и обработки информации, ориентированных на коллективное использование общесетевых ресурсов — аппаратных, информационных, программных. ЛВС можно рассматривать как коммуникационную систему, которая поддерживает в пределах одного здания или некоторой ограниченной территории один или несколько высокоскоростных каналов передачи информации, предоставляемых подключенным абонентским системам (АС) для кратковременного использования.

Основными компонентами сети являются

- кабели (передающие среды),
- рабочие станции (АРМ пользователей сети),
- •платы интерфейса сети (сетевые адаптеры),
- серверы сети.

Рабочими станциями (PC) в ЛВС служат, как правило, персональные компьютеры (ПК). На PC пользователями сети реализуются прикладные задачи, выполнение которых связано с понятием вычислительного процесса.

Серверы сети — это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа, которые могут работать и как обычная абонентская система

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛВС) оборудование

приемопередатчики (трансиверы) и повторители (репитеры) для объединения сегментов локальной сети с шинной топологией; концентраторы (хабы) — для формирования сети произвольной топологии (используются активные и пассивные концентраторы); **мосты** — для объединения локальных сетей в единое целое и повышения производительности этого целого путем регулирования трафика (данных пользователя) между отдельными подсетями; **модемы** (модуляторы — демодуляторы) — для согласования цифровых сигналов, генерируемых компьютером, с аналоговыми сигналами типичной современной телефонной линии; **анализаторы** — для контроля качества функционирования сети; сетевые тестеры — для проверки кабелей и отыскания неисправностей в системе установленных кабелей

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛВС) оборудование

маршрутизаторы и коммутаторы — для реализации функций коммутации и маршрутизации при управлении трафиком в сегментированных (состоящих из взаимосвязанных сегментов) сетях. В отличие от мостов, обеспечивающих сегментацию сети на физическом уровне, маршрутизаторы выполняют ряд «интеллектуальных» функций при управлении трафиком. Коммутаторы, выполняя практически те же функции, что и маршрутизаторы, превосходят их по производительности и обладают меньшей латентностью (аппаратная временная задержка между получением и пересылкой информации);

Характеристики физических каналов

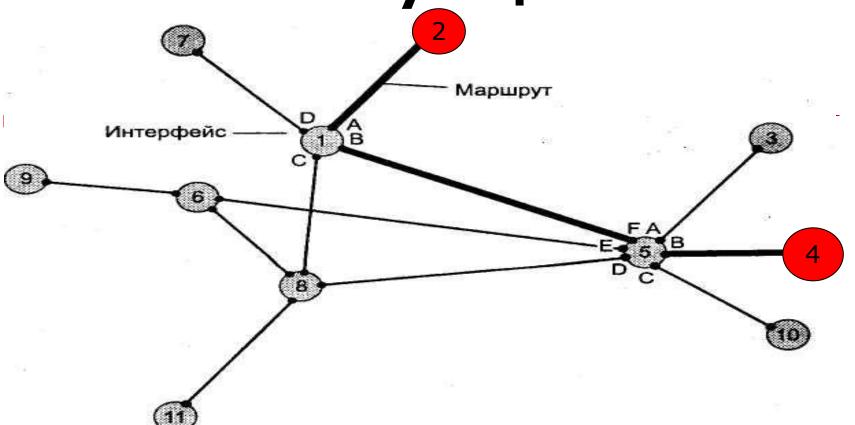
- □ Предложенная нагрузка это поток данных, поступающий от пользователя на вход сети. Предложенную нагрузку можно характеризовать скоростью поступления данных в сеть.
- □ Скорость передачи данных это фактическая скорость потока данных, прошедшего через сеть.
- Емкость канала связи, называемая также пропускной способностью, представляет собой максимально возможную скорость передачи информации по каналу.

Типы физических каналов

- Дуплексный канал обеспечивает одновременную передачу информации в обоих направлениях.
- □ Полудуплексный канал также обеспечивает передачу информации в обоих направлениях, но не одновременно, а по очереди. То есть в течение определенного периода времени информация передается в одном направлении, а в течении следующего периода в обратном.
- Симплексный канал позволяет передавать информацию только в одном направлении. Часто дуплексный канал состоит из двух симплексных каналов.

- Адреса можно классифицировать следующим образом:
 - уникальный адрес используется для идентификации отдельных интерфейсов;
 - групповой адрес идентифицирует сразу несколько интерфейсов;
 - данные, направленные по широковещательному адресу, должны быть доставлены всем узлам сети;
 - в новой версии протокола определен адрес произвольной рассылки, где данные, посланные по адресу, должны быть доставлены не всем адресам данной группы, а любому из них.

- □ Адреса могут быть числовыми (например, 129.26.255.255 или 81.la.ff.ff) и символьными (site.domen.ru, willi-winki).
- Символьные адреса (имена) предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку.
- Интерфейс формально определенная логическая и физическая границы между взаимодействующими независимыми объектами.
 - Физический интерфейс определяется набором электрических связей и характеристиками сигналов.
 - Логический интерфейс набор информационных сообщений и правил обмена данными.


- Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством.
- Адресное пространство может иметь плоскую (линейную) организацию или иерархическую организацию.
 - При **плоской** организации множество адресов никак не структурировано. Примером плоского числового адреса является **MAC-адрес**, предназначенный для однозначной идентификации сетевых интерфейсов в локальных сетях.
 - При **иерархической** организации адресное пространство организовано в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов, определяют отдельный сетевой интерфейс.
 - Типичными представителями иерархических числовых адресов являются сетевые IP- и IPX-адреса. В них поддерживается двухуровневая иерархия, адрес делится на старшую часть — номер сети и младшую — номер узла.

- Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.
- Проблема установления соответствия между адресами различных типов может решаться централизованными и распределенными средствами.
 - При централизованном подходе в сети выделяется один или несколько компьютеров, в которых хранится таблица соответствия имен различных типов. Все остальные компьютеры обращаются к серверу имен с запросами, чтобы по символьному имени найти числовой номер необходимого компьютера.
 - При распределенном подходе каждый компьютер сам хранит все назначенные ему адреса разного типа. Все компьютеры сети сравнивают содержащийся в запросе адрес с собственным. Тот компьютер, у которого обнаружилось совпадение, посылает ответ, содержащий искомый аппаратный адрес. Такая схема использована в протоколе разрешения адресов (ARP) стека TCP/IP.

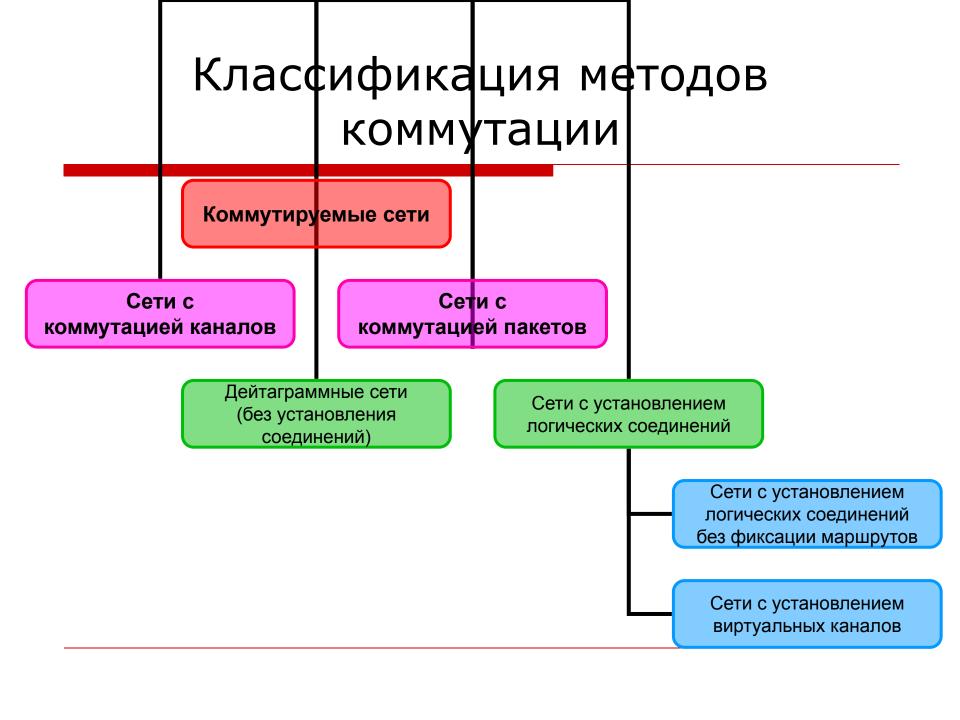
Коммутация

- Каким способом передавать данные между конечным узлами (пользователями)?
- □ Коммутация это соединение конечных узлов через сеть транзитных узлов.
 - коммутация пакетов (данные разделяются на небольшие порции(пакеты), которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета).
- Маршрут –последовательность узлов, лежащих на пути от отправителя к получателю.

Коммутация

В данной сети узлы 2 и 4, непосредственно между собой не связанны и вынуждены передавать данные через транзитные узлы, например, узлы 1 и 5.

Узел 1 должен выполнить передачу данных между своими интерфейсами A и B, а узел 5 — между интерфейсами F и B. В данном случае **маршрутом** является последовательность: **2-1-5-4**,


где 2 — узел-отправитель, 1 и 5 — транзитные узлы, 4 — узел-получатель.

Коммутация

- Информационным потоком называется непрерывная последовательность данных, объединенных набором общих признаков.
- Весь поток входящих в транзитный узел данных разделяется на подпотоки, каждый из которых передается на интерфейс, соответствующий маршруту продвижения данных.

Задачи коммутации

- определение потоков и соответствующих маршрутов;
- фиксация маршрутов в таблицах сетевых устройств;
- распознавание потоков и передача данных между интерфейсами одного устройства;
- мультиплексирование/демультиплексиров ание потоков;
- разделение среды передачи данных.

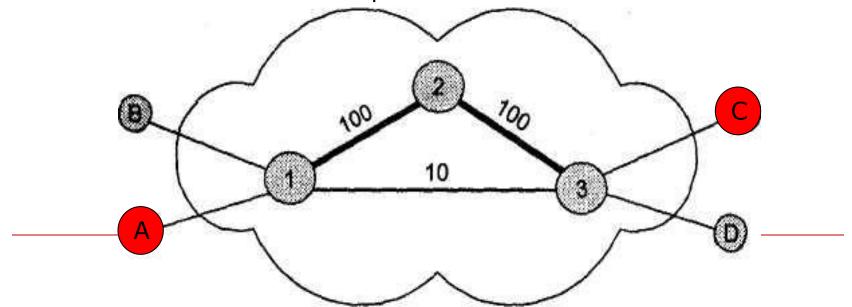
Дейтаграммная передача в коммутируемых сетях

- □ Дейтаграммный способ передачи данных основан на том, что все передаваемые пакеты обрабатываются независимо друг от друга (каждый пакет рассматривается сетью как независимая единица передачи – дейтаграмма).
- Функционирует на основе таблиц коммутации, содержащих набор адресов назначения и адресную информацию, определяющую следующий по маршруту (транзитный или конечный) узел.
- В одной и той же сетевой технологии могут быть задействованы разные способы передачи данных.
- □ Пример: Для передачи данных между отдельными сетями, составляющими Интернет, используется дейтаграммный протокол IP.
- □ Недостатки: При таком методе нет гарантии доставки пакета (доставка с максимальными усилиями).

Логическое соединение в коммутируемых сетях

- Процедура обработки данных определяется не для отдельного пакета, а для всего множества пакетов, передаваемых в рамках каждого логического соединения.
- Пакеты, принадлежащие одному и тому же соединению, имеющие одни и те же адреса отправления и назначения, могут перемещаться по разным независимым друг от друга маршрутам.
- Пример: протокол ТСР устанавливает логические соединения без фиксации маршрута.

Виртуальный канал в коммутируемых сетях

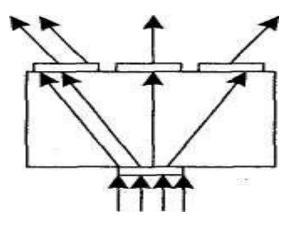

- Если в число параметров соединения входит маршрут, то все пакеты, предаваемые в рамках данного соединения, должны проходить по указанному пути.
- □ Такой единственный заранее проложенный фиксированный маршрут, соединяющий конечные узлы в сети с коммутацией пакетов, называют виртуальным каналом.
- Функционируют на основе таблиц коммутации, которые гораздо короче, чем в дейтаграммных сетях (содержат записи не обо всех возможных адресах назначения, а только о виртуальных каналах) и каждый пакет помечается меткой (идентификатор виртуального канала).
- □ Пример: сети ATM и Frame Relay поддерживают виртуальные каналы и входят в состав Интернета.

- Задача маршрутизации включает в себя две подзадачи:
 - определение маршрута;
 - оповещение сети о выбранном маршруте.
- □ Определить маршрут это значит выбрать последовательность транзитных узлов и их интерфейсов, через которые надо передавать данные, чтобы доставить их адресату.

- Между парой взаимодействующих сетевых интерфейсов существует множество путей.
- Выбор останавливают на одном оптимальном маршруте. В качестве критериев оптимальности могут выступать:
 - пропускная способность;
 - загруженность каналов связи;
 - количество промежуточных транзитных узлов;
 - надежность каналов и транзитных узлов

- Маршрут может определяться
 эмпирически («вручную»)
 администратором сети. Однако
 эмпирический подход к определению
 маршрутов мало пригоден для большой сети со сложной топологией.
- В этом случае используются
 автоматические методы определения
 маршрутов. Для этого конечные узлы и
 другие устройства сети оснащаются
 специальными программными средствами.

- Для передачи, трафика между конечными узлами A и C существуют два альтернативных маршрута: **A-1-2-3-C и A-1-3-C.** По топологии выбор очевиден маршрут A-1-3-C, который имеет меньше транзитных узлов.
- Каналы 1-2 и 2-3 обладают пропускной способностью 100 Мбит/с, а канал 1-3 только 10 Мбит/с. Если мы хотим, чтобы информация передавалась по сети с максимально возможной скоростью, то нам нужно выбрать маршрут А-1-2-3-С, хотя он и проходит через большее количество промежуточных узлов. То есть можно сказать, что маршрут **А-1-2-3-С** является «более коротким».

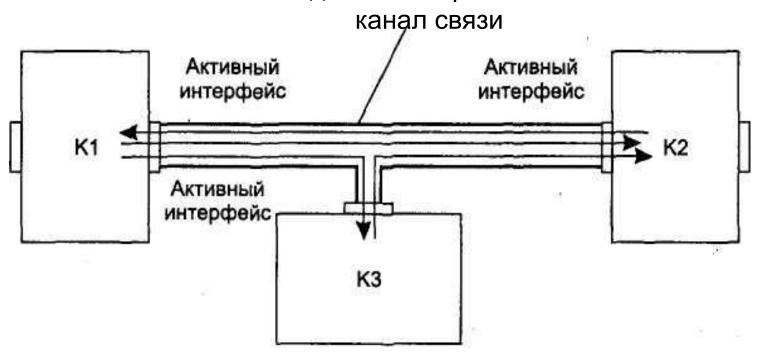

Мультиплексирование и демультиплексирование

- Мультиплексирование –это объединение нескольких отдельных потоков в общий (суммарный, агрегированный).
- □ Демультиплексирование это разделение суммарного потока на несколько составляющих его потоков.

Мультиплексирование и демультиплексирование

Мультиплексор - коммутатор, который имеет несколько входных интерфейсов и один выходной

Демультиплексор - коммутатор, который имеет один входной интерфейс и несколько выходных


Разделяемая среда передачи данных

- Проблема совместного использования канала несколькими интерфейсами разрешается разделением каналов связи между интерфейсами.
- Совместно используемый несколькими интерфейсами физический канал называют разделяемым (разделяемая среда передачи данных).
- Разделяемая среда передачи данных часто используется в локальных сетях (технология Ethernet). Удешевление сети, но потеря производительности.

Разделяемая среда передачи данных

Передача данных в разные стороны, но только попеременно.

Разделяемый физический

Разделяемая среда передачи данных

- □ Разделяемой средой называется физическая среда передачи данных (коаксиальный кабель, витая пара, оптическое волокно, радиоволны), к которой непосредственно подключено несколько конечных узлов сети и которой они могут пользоваться только по очереди.
- □ В основе сетевых технологий Ethernet, FDDI, Token Ring лежит принцип разделяемой среды.
- Сегодня существует интерес к разделяемым средам, о чем свидетельствуют
 - домашние проводные сети,
 - персональные радиосети новой технологии Bluetooth, предназначенные для объединения всех «компьютеризированных» устройств личного пользования (телевизор, мобильный телефон),
 - локальные сети Radio Ethernet, применяемые для подключения пользователей к Интернету в аэропортах, вокзалах и других местах скопления мобильных пользователей.

Масштабируемость и расширяемость

- Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.
- Расширяемость означает возможность добавления отдельных компонентов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов кабелей и замены существующей аппаратуры более мощной.

□ Топология. В стандарте Ethernet строго зафиксирована топология — общая шина.

Способ коммутации. В технологии
 Ethernet используется дейтаграммная коммутация пакетов.

- □ Полудуплексный способ передачи. Разделяемая среда Ethernet представляет собой полудуплексный канал передачи. Сетевой адаптер выполняет операции передачи данных и их приема попеременно.
- Адресация. Каждый сетевой адаптер, имеет уникальный аппаратный адрес (так называемый МАС-адрес). Адрес Ethernet является плоским числовым адресом, иерархия здесь не используется.

Ethernet наиболее популярное во всем мире семейство стандартов для локальных сетей, которое охватывает физический и канальный уровень модели OSI. Стандарты Ethernet отличаются поддерживаемой скоростью; широко распространены на сегодняшний день скорости 10, 100 и 1000 Мбит/с (т.е. 1 Гбит/с). Различные варианты технологии

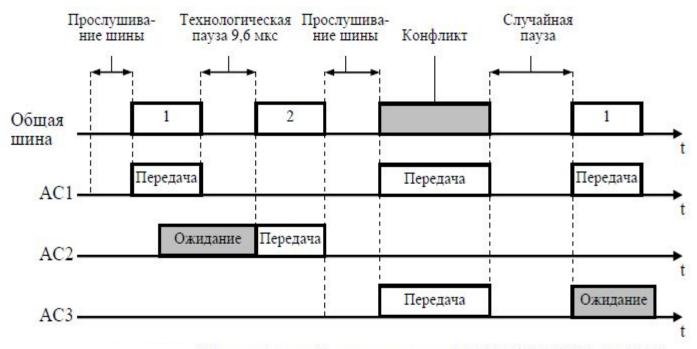
также отличаются типом используемой среды передачи данных, например, в наиболее популярных стандартах Ethernet используется недорогой тип кабеля, а именно неэкранированная витая пара (Unshielded Twisted Pair UTP), в то время как в других более

дорогой оптоволоконный кабель

Большинство стандартов по разному реализовано на физическом уровне, работает с различными скоростями и типами кабелей.

В стандартах IEEE канальный уровень разделен на два подуровня:

- IEEE 802.3 подуровень контроля доступа к среде передачи данных (подуровень MAC);
- IEEE 802.2 подуровень управления логическим каналом (подуровень LLC). Фактически МАС адрес получил свое название от названия нижнего подуровня канального уровня Ethernet.


Общеизвестн ое название	Скорост ь (Мбит/с)	Альтернативн ое название	Стандарт IEEE	Тип кабеля, максимальная длина (м)
Ethernet	10	10BASET	IEEE 802.3	Медный, 100
Fast Ethernet	100	100BASETX	IEEE 802.3u	Медный, 100
Gigabit Ethernet	1000	1000BASELX, 1000BASESX	IEEE 802.3z	Оптический, 550 для SX, 5000 для LX
Gigabit Ethernet	1000	1000BASET	IEEE 802.3ab	Медный, 100

Альтернативное название для каждого типа среды Ethernet содержит значение скорости (10, 100,1000 Мбит/с), а буква "Т" обозначает использование неэкранированной витой пары в качестве среды передачи данных (буква "Т" имеется в словосочетании twisted pair витая пара).

Поскольку в сети используется общая шина, то если два или более электрических сигнала будут передаваться одновременно, они будут накладываться и "сталкиваться" (коллизия) исходные сигналы при наложении станут нераспознаваемыми. Вполне очевидно, что в стандарте Ethernet алгоритм работы сети разрешает только одному устройству одновременно пересылать данные в сеть, иначе среду Ethernet нельзя было бы использовать для передачи данных. Такой алгоритм работы был назван множественным доступом с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access With Collision Detection CSMA/CD), и именно он определяет, как осуществляется доступ к общей шине в среде Ethernet.

Обобщение алгоритма CSMA/CD

- Устройство, которое хочет передать фрейм, ожидает отсутствия передачи в локальной сети. Другими словами, пересылка фрейма не выполняется до тех пор, пока присутствует электрический сигнал в общей шине.
- При возникновении коллизии ("столкновении" двух сигналов) устройства, которые создали коллизию, ожидают в течение случайного интервала времени, а затем пробуют повторить передачу.

Метод случайного доступа МДКН/ОК (CSMA/CD)

Как и любой другой стандарт локальной сети 10BASE5 и 10BASE2, Ethernet задает ограничение на общую длину кабеля. Максимальная длина сегмента для стандарта 10BASE5 равна 500 м, а для 10BASE2 185 м. Цифры 2 и 5 в спецификации стандарта соответствуют максимальной длине кабеля, где 2 соответствует 200 метрам, что очень близко к реальному значению в 185 метров.

В некоторых случаях максимальной длины кабеля недостаточно для подключения устройств. В таких случаях используется устройство, которое называется повторителем (repeater). Одна из причин, по которой ограничивается длина кабеля, заключается в том, что сигнал, переданный одним устройством, может очень сильно ослабнуть, затухнуть, если длина кабеля превышает 185 или 500 м. Затухание это процесс ослабления сигнала при прохождении через проводники; чем длиннее кабель, тем большее затухание испытывает сигнал

- Первоначально среда Ethernet представляла собой электрическую шину, к которой подключались все устройства.
- Повторители увеличивают длину сегментов локальной сети, очищая и регенерируя сигнал, без интерпретации значения электрического сигнала, т.е. работают на первом уровне модели OSI.
- Концентраторы это повторители, которые обеспечивают централизованную точку включения кабелей витой пары, но все еще образуют общую электрическую шину, используемую различными устройствами, так же как в стандартах 10BASE2 и 10BASE5.
- Коллизии возникают в любом из указанных выше случаев, и в технологии Ethernet используется алгоритм CSMA/CD, который указывает устройствам, как избежать коллизий и какие действия предпринимать в случае их возникновения.

Контрольные вопросы и задания

- К какому типу можно отнести следующие адреса:
 - www.olifer.net;
 - 20-34-a2-00-c2-27;
 - **128.145.23.170.**
- Объясните различия между разделением среды передачи данных и мультиплексированием.
 - Какие из утверждений о маршруте верны:
 - Маршруты определяются администратором и заносятся вручную в специальные таблицы.
 - Маршрут это последовательность узлов, лежащих на пути от отправителя к получателю.
 - Из нескольких маршрутов всегда выбирается оптимальный.
 - Таблица маршрутов строится автоматически сетевым программно-аппаратным обеспечением.
 - Все предыдущие утверждения верны.
 - Все предыдущие утверждение неверны.