Керамические материалы

Стекло и материалы на основе стекла

Общие сведения

Керамическими называют искусственные каменные материалы и изделия, полученные в процессе технологической обработки минерального сырья и последующего обжига при высоких температурах.

Под технологией керамики всегда подразумевали производство материалов и изделий из глинистого сырья и смесей его с органическими и минеральными добавками.

Материал, из которого состоят керамические изделия после обжига, в технологии керамики называют керамическим черепком.

В понятие керамические материалы и изделия входит широкий круг материалов с различными свойствами.

Их классифицируют по ряду признаков.

По *назначению* керамические изделия подразделяют на следующие виды:

- Стеновые;
- Отделочные;
- Кровельные;
- Для полов;
- Для перекрытий;
- Дорожные;
- Санитарно-технические;
- Кислотоупорные;
- Теплоизоляционные;
- Огнеупорные
- Заполнители для бетонов

По структуре различают керамические изделия с пористым и спекшимся (плотным) черепком.

Пористыми считают изделия с водопоглощением по массе более 5%.

К ним относятся изделия как грубой (керамические стеновые кирпич и камень, изделия для кровли и перекрытий, дренажные трубы), так и тонкой (облицовочные плитки, фаянсовые) керамики.

К плотным относят изделия с водопоглощением по массе менее 5%.

К ним принадлежат изделия также грубой (клинкерный кирпич, крупноразмерные облицовочные плиты), и тонкой (фаянс, полуфарфор, фарфор) керамики.

Сырье для производства керамических

материалов

Основным сырьем для производства керамических изделий является глинистое сырье (глины и каолины), применяемое в чистом виде, а чаще в смеси с добавками – отощающими, порообразующими, плавнями, пластификаторами и др.

Глинистые частицы имеют пластинчатую форму, между которыми при смачивании образуются тонкие слои воды, вызывая набухание частиц. Поэтому глина, смешанная с водой, дает легко формуемую пластичную массу.

При сушке глиняное тесто теряет воду и уменьшается в объеме. Этот процесс называется воздушной усадкой. Чем больше в глинистом сырье глинистых частиц, тем выше пластичность и воздушная усадка глин.

Глины с содержанием глинистых частиц более 60% называют «жирными», отличаются высокой усадкой, для снижения которой в глины добавляют «отощающие» добавки.

Глины с содержанием глинистых частиц менее 10-15% - «тощие» глины, в них при производстве изделий вводят тонкодисперсные добавки, например, бентонитовую глину.

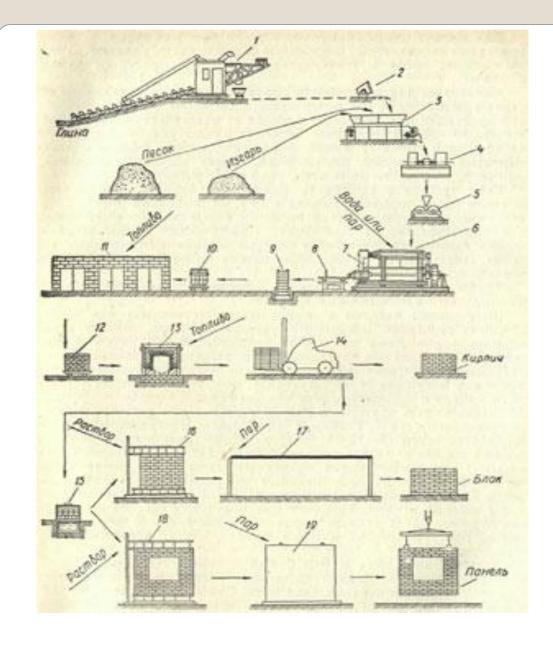
<u>Добавки к глинам</u>

Отощающие добавки. Их вводят в пластичные глины для уменьшения усадки при сушке и обжиге и предотвращения деформаций и трещин в изделиях.

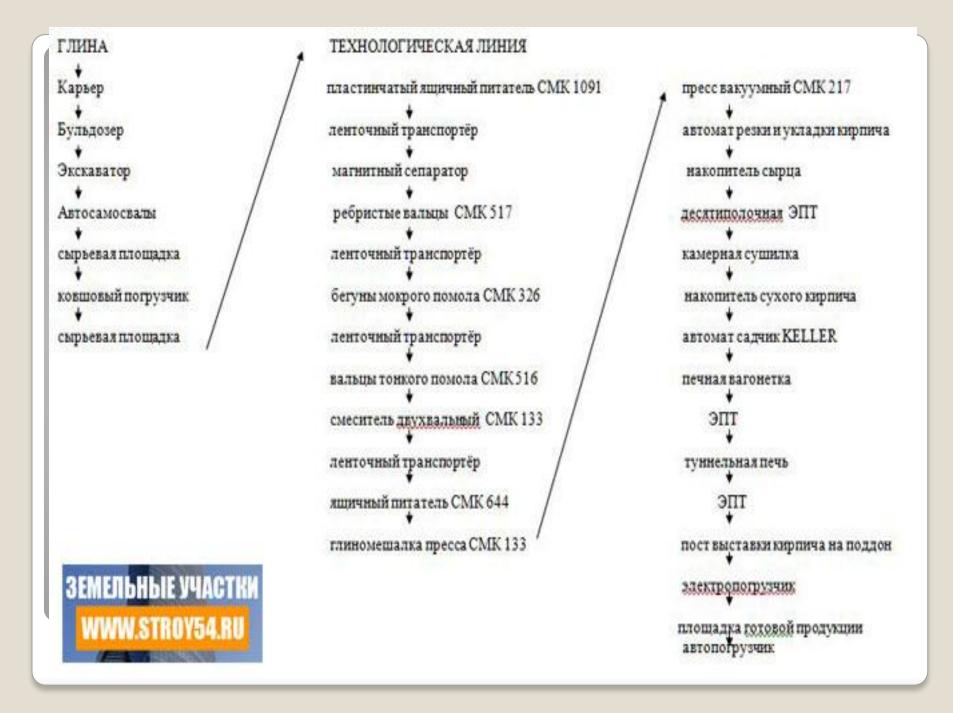
К ним относятся: дегидратированная глина, шамот, шлаки, золы, кварцевый песок.

Порообразующие добавки. Их вводят для повышения пористости черепка и улучшения теплоизоляционных свойств керамических изделий.

К ним относятся: древесные опилки, угольный порошок, торфяная пыль. Эти добавки являются одновременно и отощающими.


Плавни. Их вводят с целью снижения температуры обжига керамических изделий.

К ним относятся: полевые шпаты, железная руда, доломит, магнезит, тальк, песчаник, стеклобой, перлит.

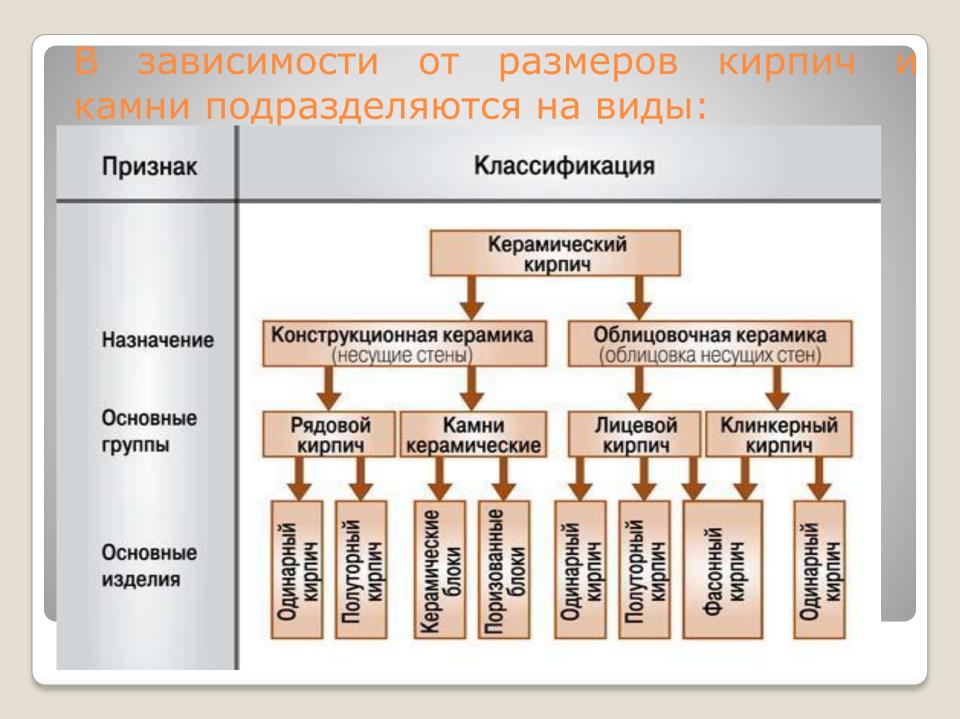

Пластифицирующие добавки. Их вводят с целью повышения пластичности сырьевых смесей при меньшем расходе воды.

К ним относятся: высокопластичные глины, поверхностно-активные вещества.

Специальные добавки. Для повышения кислотостойкости в сырьевые смеси добавляют песчаные смеси, затворенные жидким стеклом. Для получения цветной керамики добавляют оксиды металлов.

При всем многообразии керамических изделий ПО свойствам, формам, назначению, виду сырья и технологии изготовления основные этапы производства керамических изделий являются общими и состоят из следующих операций: Добыча сырьевых материалов; Подготовка массы; Формование изделий; Сушка; Обжиг.

Перед обжигом изделия должны быть высушены до содержания влаги 5-6% во избежание неравномерной усадки, искривлений и растрескиваний при обжиге.


Обжиг – важнейший и завершающий процесс в производстве керамических изделий.

Этот процесс можно разделить на три периода: прогрев сырца, собственно обжиг и регулируемое охлаждение.

- при нагреве сырца до 120°C удаляется физически связанная вода и керамическая масса становится непластичной;
- в температурном интервале 450-600°C удаляется химически связанная вода, разрушаются глинистые минералы и глина переходит в аморфное состояние, выгорают органические примеси и добавки;
- при 800°C начинается повышение прочности изделий, благодаря протеканию реакций в твердой фазе на границе поверхностей частиц компонентов.

В процессе нагрева до 1000°С возможно образование новых кристаллических силикатов (силлиманита), а при нагреве до 1200°С и муллита. Одновременно с этим легкоплавкие соединения и минералы плавни создают некоторое количество расплава, который обволакивает не расплавившиеся частицы, стягивает их, приводя к уплотнению и усадке массы в целом. Эта усадка называется огневой усадкой. После остывания изделие приобретает камневидное состояние, водостойкость и прочность.

Свойство глин уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью глин.

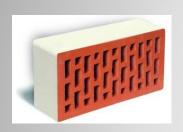
В зависимости от размеров кирпич и камни подразделяются на виды:

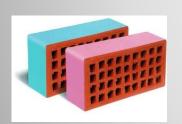
- Утолщенный;
- Модульный;
- Обыкновенный;
- Пустотелый;
- Полнотелый;

По плотности в сухом состоянии подразделяются на 3 группы:

- 1. Обыкновенные;
- 2. Условно-эффективные;
- 3. Эффективные.

Керамические изделия для внешней облицовки зданий




Кирпич и камни лицевые являются не только облицовочными изделиями. Они укладываются вместе с кладкой стены и одновременно служат конструктивным несущим элементом вместе с обычным кирпичом.

Лицевые кирпичи и камни выпускаются тех же размеров и форм, что и обычные, и отличаются более высокой плотностью и однородностью цвета. Производятся по прочности марок 75, 100, 125, 150, а по морозостойкости не менее 25.

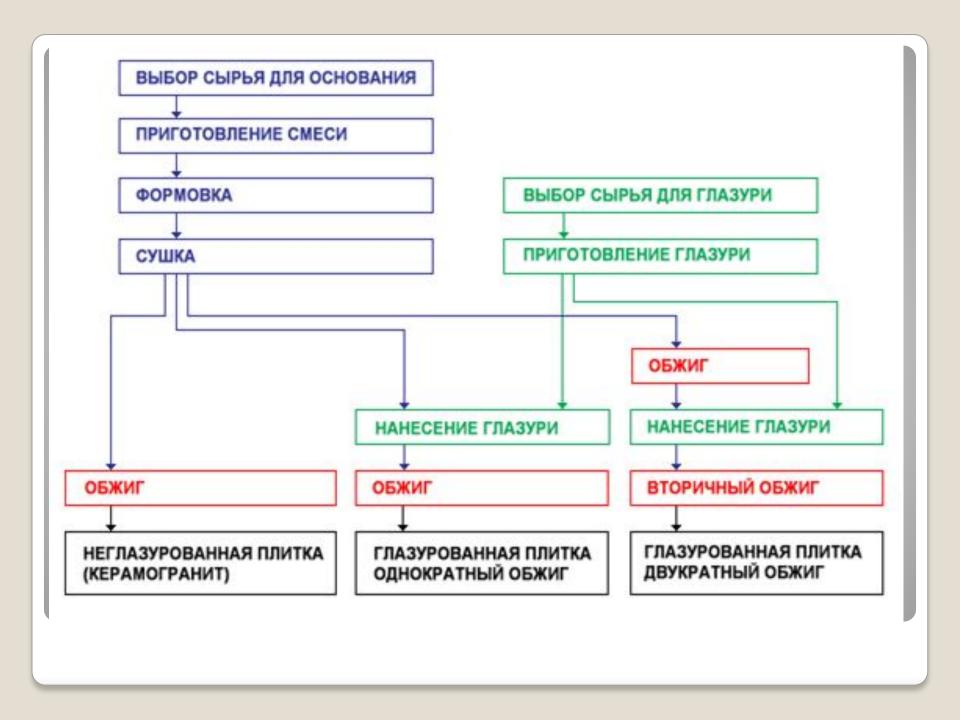
Регулируя состав сырья и режим обжига получают от белого, кремового до светлокрасного и коричневого цвета.

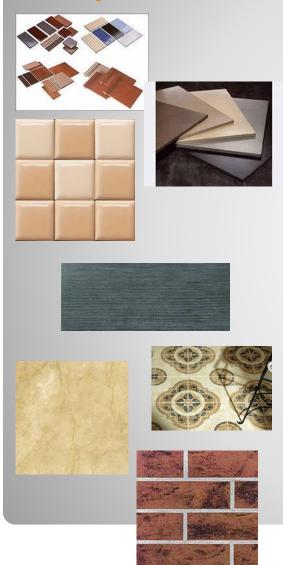
При отсутствии высококачественного сырья изготавливаются с офактуренной лицевой поверхностью: ангобированием, глазурованием, двухслойным формованием.

Ангобом называется нанесенный на изделие тонкий слой беложгущейся или цветной глины, образующей цветное покрытие с матовой поверхностью. По свойствам ангоб должен быть близок к основному черепку.

Глазурь – стекловидное покрытие толщиной 0,1-0,2 мм, нанесенное на изделие и закрепленное обжигом. Глазури могут быть прозрачными и глухими (непрозрачными) различного цвета. Для изготовления глазури используют: кварцевый песок, каолин, полевой шпат, соли щелочных металлов.

Сырьевые смеси размалывают в порошок и наносят на поверхность изделий в виде порошка или суспензии перед обжигом.





Крупноразмерные облицовочные плиты универсального назначения выпускаются глазурованные и неглазурованные с гладкой, шероховатой или рифленой поверхностью. Плиты имеют водопоглощение менее 1% и морозостойкость 50 циклов и более. Изготавливаются квадратной или прямоугольной формы длиной 490, 990, 1190 мм, шириной 490 и 990 мм и толщиной 9-10 мм.

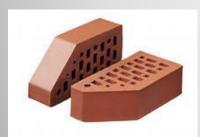
Применяются для облицовки фасадов и цоколей зданий, подземных переходов

Керамические плитки для внутренней облицовки

Плитки для облицовки стен применяются двух видов: майоликовые и фаянсовые. Водопоглощение плиток для внутренней отделки до 16%, предел прочности при изгибе – 12 МПа. Плитки должны выдерживать перепады температур от 125°C до 20°C без проявления дефектов.

Плитки керамические для полов производятся из тугоплавких и огнеупорных глин с добавками и без них. При производстве плитки обжигаются до спекания, вследствие чего имеют водопоглощение не более 4% и высокую износостойкость.

Керамические изделия для кровли и перекрытий



Черепица, имея долговечность до 300 лет, по этому показателю значительно превышает любые другие кровельные материалы, а по текстурным качествам и по стоимости не уступает им.

Высокая долговечность, огнестойкость, устойчивость к атмосферным воздействиям и распространенность сырья делают керамическую черепицу одним из самых эффективных кровельных материалов.

Перекрытия из пустотелых камней и плит огнестойки, долговечны, обладают хорошими тепло- и звукоизоляционными свойствами. Для их устройства требуется небольшой расход цемента и стали и не требуется дополнительная засыпка.

Трубы дренажные производятся в мелиоративном строительстве для устройства закрытого дренажа с защитой стыков фильтрующими материалами.

Клинкерный кирпич получают обжигом глин до полного спекания, но без остекловывания поверхности, поэтому он отличается от обычного ВЫСОКИМИ прочностью Клинкерный морозостойкостью. кирпич называют и дорожным и применяется он для покрытия дорог и мостовых, облицовки набережных. Применяется в химической промышленности как кислотостойкий материал.

Стекло и другие плавленые материалы и изделия получают из минеральных силикатных расплавов, сырьем для которых служат горные породы и некоторые побочные продукты промышленности.

Минеральные расплавы в зависимости от исходного сырья разделяются на следующие группы:

- стеклянные;
- каменные;
- шлаковые;
- ситаллы;
- шлакоситаллы.

Материалы из расплавов обладают высокими показателями долговечности, химической стойкости к воздействию агрессивных сред, отличными декоративными свойствами, а некоторые из них и прозрачностью

Из минеральных расплавов получают изделия самого различного назначения:

- листовые светопрозрачные;
- конструкционные;
- отделочные;
- облицовочные;
- трубы специальные;
- тепло- и звукоизоляционные.

Стекло и его свойства

Стеклом называют все аморфные тела, получаемые путем переохлаждения расплавов, независимо от их химического состава и температурной области затвердевания, обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем переход из жидкого состояния в стеклообразное может быть обратимым.

В строительстве используют почти исключительно силикатное стекло, основным компонентом которого является диоксид кремния SiO_2 .

К **основным** сырьевым материалам для производства стекла относятся: кварцевый песок, сода, доломит, известняк, поташ, сульфат натрия.

Вспомогательные сырьевые материалы вводят в шихту для ускорения варки стекла и придания ему требуемых свойств.

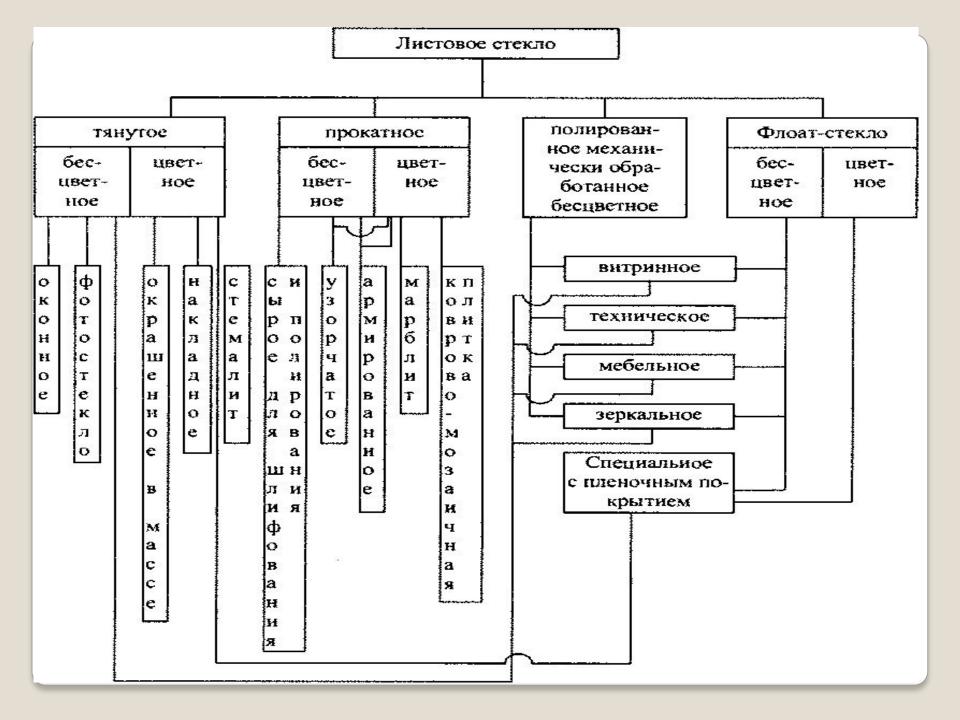
- *осветлители* способствуют удалению из стекломассы газовых пузырьков.
- глушители делают стекло непрозрачным.
- *красители* придают стеклу заданный цвет (соединения кобальта синий, хрома зеленый, марганца фиолетовый).

Основы производства стекла

- Обработка (дробление и помол материалов, просеивание через сита);
- Приготовление шихты (дозирование и смешение);
- Стекловарение;
- Формование изделий;
- Отжиг (обязательная операция при изготовлении изделий);
- Закалка (при получении стекла с повышенной прочностью);
- Заключительная обработка изделий (шлифование, полирование, декоративная обработка).

Свойства стекла и стеклоизделий

Плотность обычного строительного силикатного стекла — 2,5 г/см 3 . В зависимости от содержания различных добавок стекла имеют плотность от 2,2 до 6,0 г/см 3 . Плотность теплоизоляционных стеклоизделий меняется в пределах 15-600 кг/м 3 .


Прочность и деформативность стекла. Предел прочности при сжатии стекла может составлять 600-1000 МПа и более. У стекла отсутствуют пластические деформации. Хрупкость является главным недостатком стекла, которое плохо сопротивляется удару. Прочность обычного стекла при ударном изгибе составляет всего 0,2 МПа.

Химическая стойкость стекла зависит от его состава. Силикатное стекло обладает высокой химической стойкостью к большинству агрессивных сред за исключением плавиковой и фосфорной кислот.

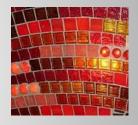
Оптические свойства стекол являются их важными свойствами и характеризуются показателями светопропускания (прозрачности), светопреломлением, отражением и рассеиванием. Обычные силикатные стекла пропускают всю видимую часть спектра и практически не пропускают ультрафиолетовые и инфракрасные лучи.

Теплопроводность стекол меняется от состава в пределах 0,5 – 1,0 Вт/ (м*⁰C). Обычное стекло имеет относительно малую термостойкость из-за малого значения коэффициента температурного расширения.

Звукоизолирующая способность стекла относительно высока. По этому показателю стекло толщиной 1 см соответствует кирпичной стене в полкирпича – 12 см.

Листовое стекло – основной вид стекла, используемый для остекления оконных и дверных проемов, витрин и внутренней отделки зданий.


Оконное стекло – производится трех марок: полированное, неполированное улучшенное, неполированное.


Витринное стекло – применяется для остекления витрин, витражей и окон общественных зданий.

Стекло листовое узорчатое имеет на одной или обеих сторонах четкий рельефный узор. Применяется для декоративного остекления оконных и дверных проемов, внутренних перегородок.

Армированное стекло – для устройства световых проемов, ограждений в различных зданиях и сооружениях. Для армирования применяется сварная или крученая сетка из стальной проволоки со светлой поверхностью.

Стеклянные материалы

Увиолевое стекло – пропускает 25-75% ультрафиолетовых лучей и применяется для остекления оранжерей и заполнения оконных проемов в детских и лечебных учреждениях.

Закаленное стекло – является безопасным, так как при разрушении распадается на мелкие осколки с тупыми нережущими краями. В строительстве применяют для устройства дверей, перегородок, потолков.

Многослойное стекло (триплекс) – армированное или неармированное, состоит из нескольких листов стекла, прочно склеенных между собой прозрачной эластичной прокладкой, чаще всего из поливинилбутирольной пленки. При ударе оно не дает осколков и является безопасным.

Теплопоглощающее стекло – предназначено для защиты интерьеров зданий от воздействия прямого солнечного излучения и уменьшения прямого солнечного излучения и уменьшения солнечной радиации в помещениях. Применяется с целью уменьшения нагрева солнцем помещения.

Пеностекло представляет собой искусственный материал, подобный пемзе. Процесс производства пеностекла заключается во вспучивании размолотого стекла, смешанного с небольшим количеством древесного угля, известняка или других материалов, выделяющих газ при температуре размягчения стекла.

Пеностекло хорошо обрабатывается, склеивается, гвоздится, воздухонепроницаемо и негигроскопично.

Изготавливается в виде блоков и гранул. Широко применяется в конструкциях как теплоизолирующий и звукопоглощающий материал.

Блоки из пеностекла применяются для тепловой изоляции строительных конструкций, промышленного оборудования, холодильников.

Гранулированное пеностекло применяется в качестве особо легкого заполнителя в производстве легкого и конструкционного или теплоизоляционного бетона. Изготавливается путем вспенивания во вращающихся печах сырцовых гранул, полученных их порошка стекла.