План проведения занятия по теме

Функции и их свойства

Скуднева Оксана Валентиновна

Образование: МГТУ им. Н. Э. Баумана, специальность «Системы автоматического управления»;

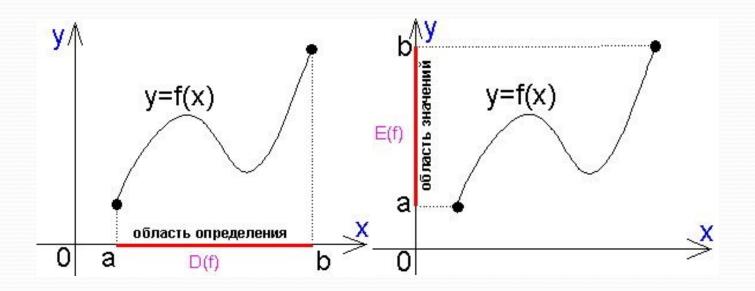
МГУ им. М. В. Ломоносова, специальность «Математика. Прикладная математика».

Место работы: МГТУ им. Н. Э. Баумана, НУК ФН, кафедра «Вычислительная математика и математическая физика», должность – старший преподаватель.

Опыт работы: средняя школа, 2002-2011 гг., факультативные курсы по подготовке к Олимпиадам МГТУ им. Н. Э. Баумана «Шаг в будущее», «Олимпиада Жуковского», ЕГЭ по математике, основной курс алгебры физ-мат. класса.

Основные понятия и определения.

Закон, ставящий каждому элементу из множества X (область определения -D(f)), не более одного элемента из множества Y, (область значений - E(f)), называется числовой функцией y=f(x).



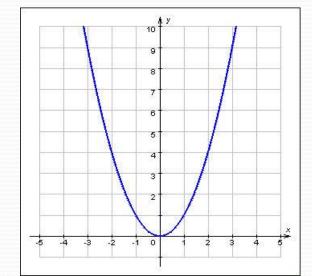
Фрефбы задания функции

Пример:

X	-4	-3	-2	-1	0	1	2	3	4
y=f(x)	16	9	4	1	0	1	4	9	16

2) Графический

Пример:

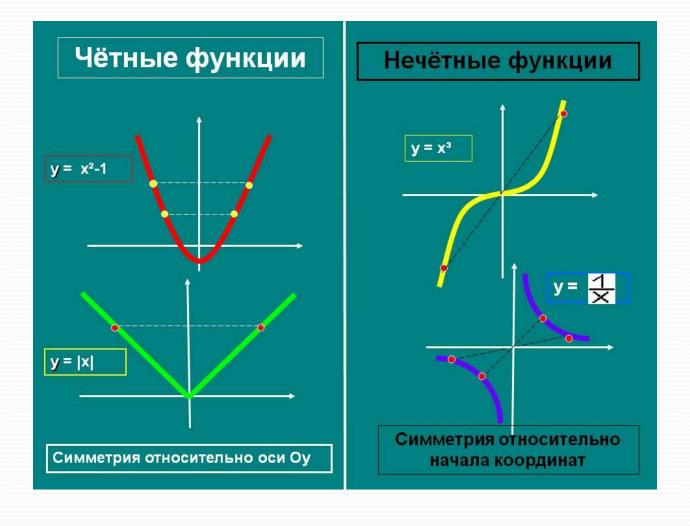


3)аналитический (формулой):

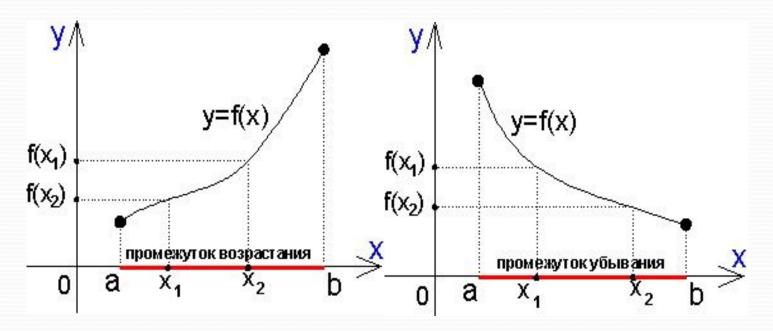
Пример: $y = x^2$

Если область определения функции D(f) симметрична относительно начала координат, и для каждого значения $x \in D(f)$ выполняется условие f(-x)=f(x), функция называется чётной. График чётной функции симметричен относительно оси OY.

Если область определения функции D(f) симметрична относительно начала координат, и для каждого значения $x \in D(f)$ выполняется условие f(-x)=-f(x), функция называется нечётной. График нечётной функции симметричен относительно начала координат.



Если для любых ЩШШШ и ЩШШШ, причём Щ > Ш, выполняется условие ШШШ < ШШШ то говорят, что функция Ш = ШШ убывает на интервале ППШШШШ.

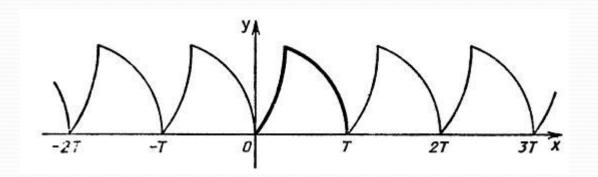


Возрастание и убывание функции объединяется понятием монотонности.

Если на промежутке области определения функция имеет значения одного знака (плюс или минус), такой интервал называется промежутком знакопостоянства функции. Числа, в которых значение функции равно нулю, называются нулями функции.



Если существует положительное число T, такое, что на всей области определения выполняется равенство T = T называется периодической, а число T - T периодом.

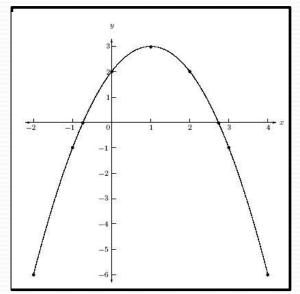


Ограниченные функции.

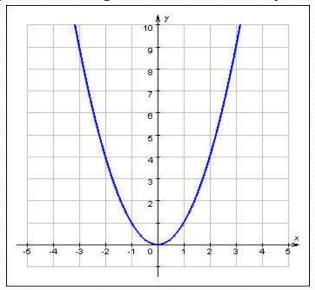
Функция f(x) называется ограниченной сверху (снизу) на множестве X, если

$$\exists \ \textit{M}(\textit{m}) \in \textit{R} \ \forall \ \textit{x} \in \textit{X} \Rightarrow \textit{f}(\textit{x}) \leq \textit{M} \ (\textit{f}(\textit{x}) \geq \textit{m}).$$

Пример. Функция, ограниченная сверху:



Функция, ограниченная снизу:

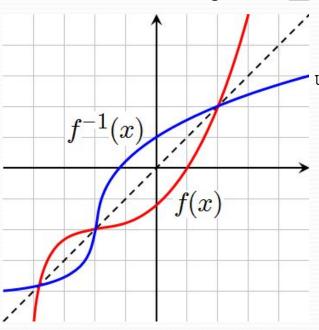


Функция, ограниченная сверху и снизу – ограниченная функция.



Обратная функция.

Пусть на множестве X определена строго монотонная функция $\equiv \equiv \equiv 0$, осуществляющая отображение $\equiv 0$ обратной функцией к ней , $\equiv 0$ называется функция, осуществляющая отображение $\equiv 0$ такое, что для каждого $\equiv 0$ $\equiv 0$ Графики исходной и обратной функций, таким образом, симметричны относительно прямой $\equiv 0$

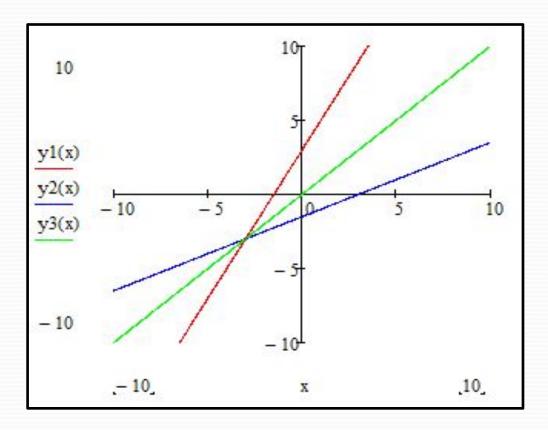


Чтобы получить обратную функцию:

- 1) Определить участки монотонности функции = ;
- 2) Для каждого участка монотонности составить функцию =
- 3) Выразим из данного выражения переменную у, получим обратную функцию , $= 1^1()$.

Пример.

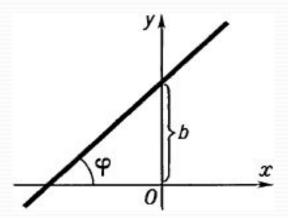
- 1) = 2 + 3 возрастает на всей области определения $= \mathbb{R}$;
- 2) Механически меняем местами переменные : [[]= 2[[]+ 3;
- 3) выражаем переменную у: $= \frac{ -3}{2}$. Это и есть обратная функция. Строим графики и убеждаемся в симметрии относительно прямой =



Оеновные элементарные функции.

Линейная функция

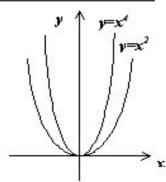
$$y = kx + b$$

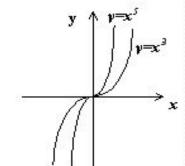


 $\square \square \square = \mathbb{R}$ - функция определена на всей числовой оси.

$$\mathbf{m} = \mathbb{R}$$

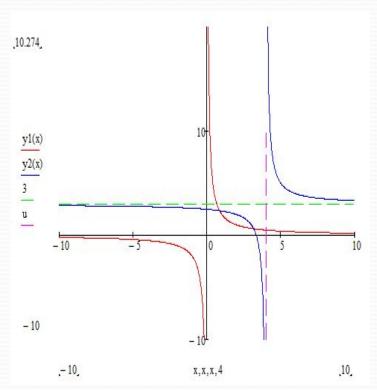
Степенная функция.





 $_{x}$ [[][N, []] = 2[][Hётное[] [[][]] = \mathbb{R} , [[][][] = [][0,][\mathbb{R} ∞ []

Дробно-рациональная функция.

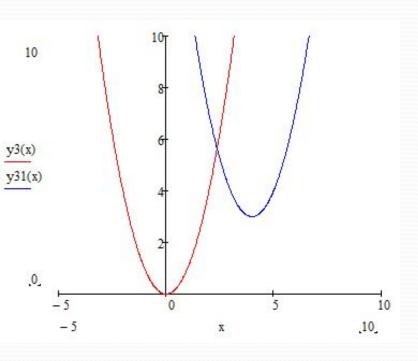


где
$$\square = -\square$$
, $\square = \square$

Пример.
$$\square 1 (\square) = \frac{2}{\square}$$

$$2 = 3 + \frac{2}{1 - 4}$$

Квадратичная функция.

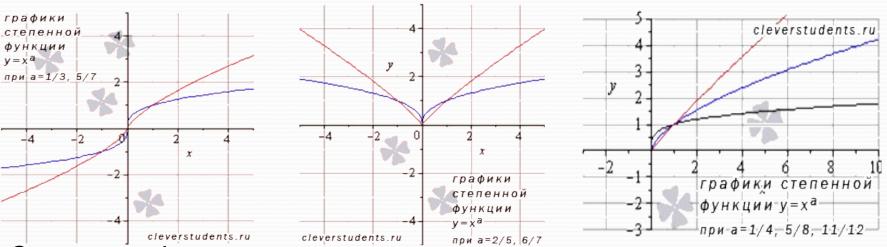


Приводится к виду

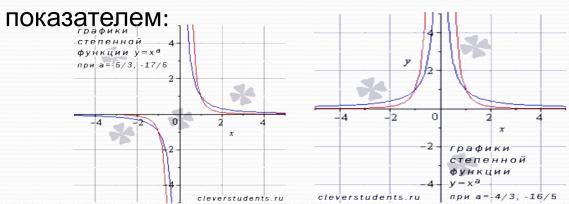
$$[[31([]]] = 3 + [][-4]^2$$

Степенные функции с рациональным показателем.

В зависимости от чётности p и q графики принимают вид:



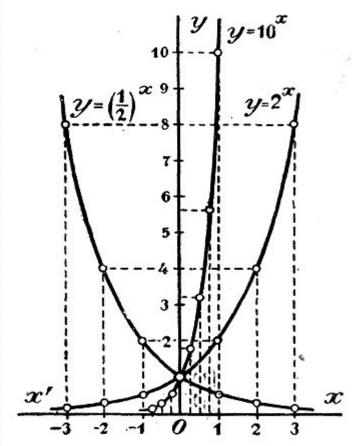
Степенные функции с отрицательным рациональным



Показательная функция

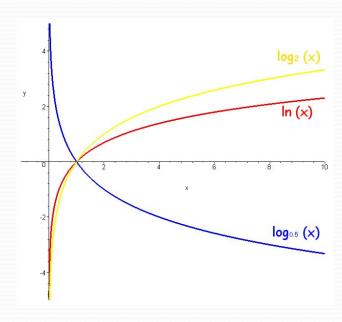
$$\boxed{ } = \mathbb{R}, \ \boxed{ } \boxed{ } = \boxed{0}, +\infty \boxed{ }$$

Твозрастание на всей области определения.

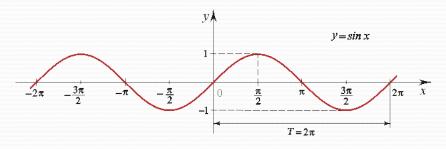


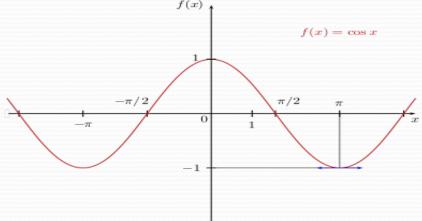
Логарифмическая функция. (Обратная к показательной)

Твозрастание на всей области определения.

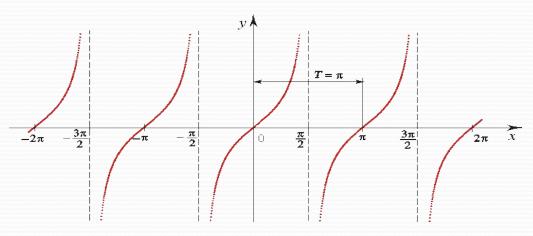


Тригонометрические функции.



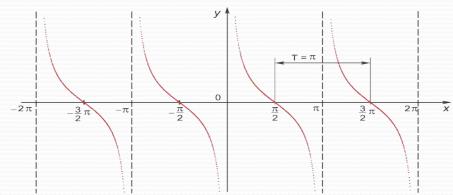


$$\boxed{ } = \boxed{-\frac{1}{2} + \boxed{1}} + \boxed{\frac{1}{2} + \boxed{1}} = \mathbb{R}, \ \boxed{ } = 0, \pm 1, \pm 2, \dots$$

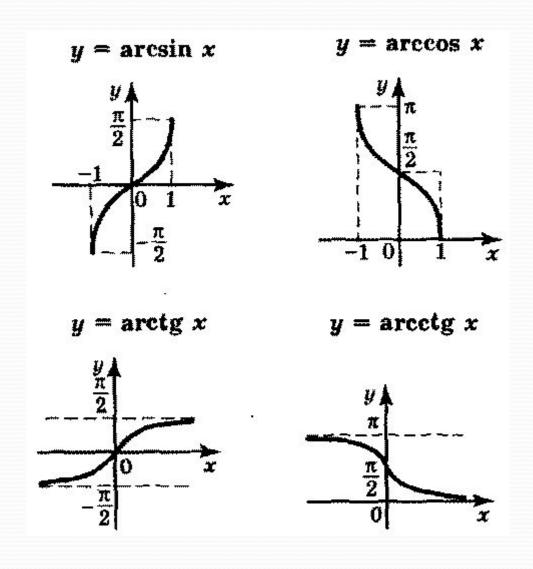


= Щечётная,

$$\boxed{} = \boxed{} + 1 \boxed{} = \mathbb{R}, \ \boxed{} = 0, \pm 1, \pm 2, \dots$$

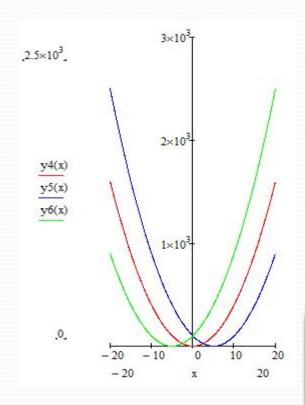


Обратные тригонометрические функции.

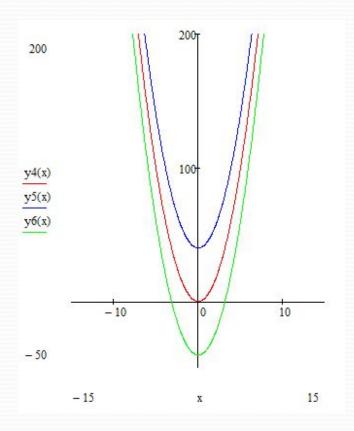


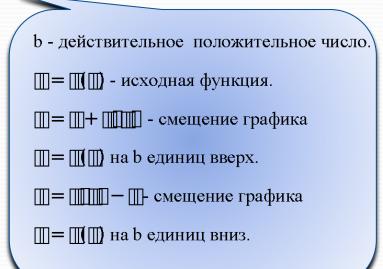
Построение эскизов графиков функций.

Смещение вдоль оси абсцисс.



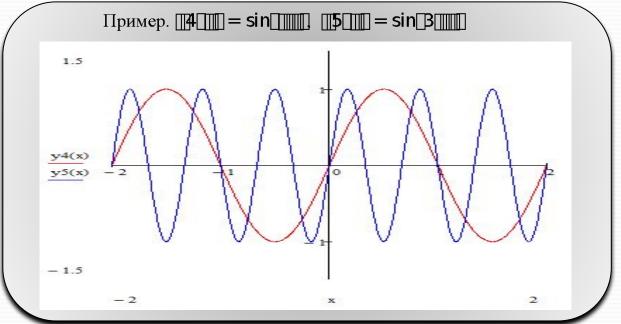
Смещение вдоль оси ординат.

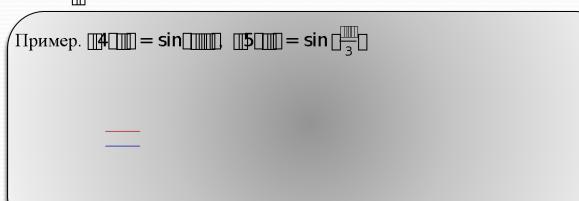




Сжатие – растяжение вдоль оси

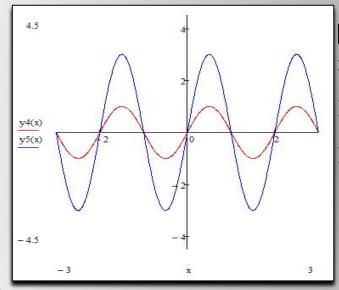
□= □ - исходная функция. k- действительное положительное число, превосходящее единицу. График функции □ = □ □ - сжат в k раз по оси абсцисс





Сжатие - растяжение вдоль оси

ординат.



□ = □ - исходная функция. k- действительное положительное число, превосходящее единицу.

График функции **= = растянут в k раз по оси ординат**.

Пример. **[[4**] = sin([[]]) = 3 sin([[]])

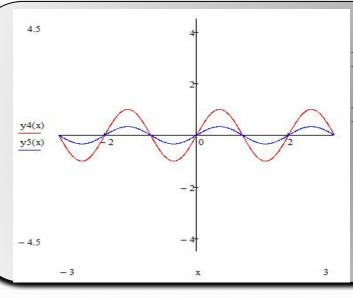


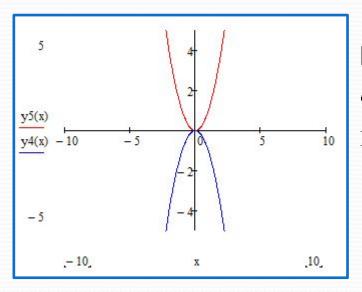
График функции $= \frac{1}{m}$ $= \frac{1}{m}$ сжат в k раз по оси ординат.

Пример. $4 = \sin = \frac{1}{3} \sin =$

Отражения

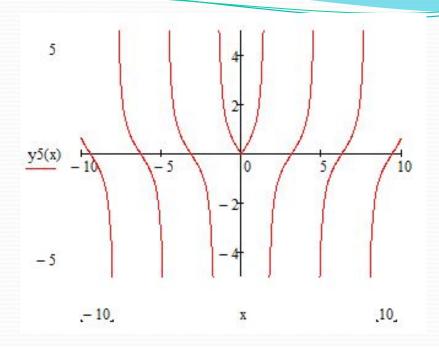
графиков.

- Ш=∭ исходная функция.



□ – □ (□) - исходная функция симметрично отражается относительно оси абсцисс.

Пример.
$$\square 5 \square \square = \square^2$$
,



□ = □ () - график исходной функции для □ ≥ 0 остаётся на прежнем месте, для □ < 0 – заменяется на отражённую относительно оси ординат часть графика для □ ≥ 0.

Пример. 📖 = 🎹 वै 📑

Билет 1

1. Построить эскизы графиков функций:

A)
$$y = \frac{3x-3}{5x+7}$$
 B) $y = \left| \frac{3x-3}{5x+7} \right|$; $y = f(g(x)), f(x) = \sqrt{x}, g(x) = |x+2|$

- 2. Определить вид монотонности функции $y = \frac{1}{(x+1)^2}$ (возр. или убывание) на отрезке: $x \in [3;7]$
- 3. Найти область определения функции

$$y = \frac{1}{\sqrt{x^2 - 2}} + \sqrt{\frac{3x^2 + 4x - 4}{x + 1}}$$

4. Найти обр. функцию y = 6 - 3x