
Equivalence Class Testing
Technique Training

Yanina Hladkova

Agenda

1. Introduction

2. Technique

3. Examples

4. Applicability and Limitations

5. Summary

6. Practice

7. References

Introduction

What is equivalence class testing?
What is it used for?

Equivalence class testing is
a technique used to reduce
the number of test cases to
a manageable level while
still maintaining reasonable
test coverage.

Introduction: Situation

We are writing a module for a human resources
system that decides how we should process
employment applications based on a person's age.
Our organization's rules are:

0-16 – Don't hire

16-18 – Can hire on a part-time basis only

18-55 – Can hire as a full-time employee

55-99 – Don't hire

Introduction: Coverage

Should we test the module for the following ages: 0,
1, 2, 3, 4, 5, 6, 7, 8, ..., 90, 91, 92, 93, 94, 95, 96, 97, 98,
99?

If we had lots of time (and didn't
mind the mind-numbing repetition
and were being paid by the hour)
we certainly could.

100 values

Introduction: Solution 1

If (applicantAge == 0) hireStatus="NO";
If (applicantAge == 1) hireStatus="NO";
…
If (applicantAge == 15) hireStatus="NO";
If (applicantAge == 16) hireStatus="PART";
If (applicantAge == 17) hireStatus="PART";
If (applicantAge == 18) hireStatus="FULL";
If (applicantAge == 19) hireStatus="FULL";
…
If (applicantAge == 53) hireStatus="FULL";
If (applicantAge == 54) hireStatus="FULL";
If (applicantAge == 55) hireStatus="NO";
If (applicantAge == 56) hireStatus="NO";
…
If (applicantAge == 98) hireStatus="NO";
If (applicantAge == 99) hireStatus="NO";

Any set of tests passes tells us
nothing about the next test we
could execute. It may pass; it may
fail.

Introduction: Let’s believe

Introduction: Solution 2

If (applicantAge >= 0 && applicantAge <=16)
 hireStatus="NO";
If (applicantAge >= 16 && applicantAge <=18)
 hireStatus="PART";
If (applicantAge >= 18 && applicantAge <=55)
 hireStatus="FULL";
If (applicantAge >= 55 && applicantAge <=99)
 hireStatus="NO";

It is clear that for the first requirement we don't
have to test 0, 1, 2, ... 14, 15, and 16. Only one
value needs to be tested. And which value? Any
one within that range is just as good as any other
one. The same is true for each of the other
ranges. Ranges such as the ones described here
are called equivalence classes.

Introduction: Benefits

Using the equivalence class approach, we have
reduced the number of test cases

From 100 (testing each age)

To 4 (testing one age in each equivalence class)

A significant savings

Introduction: Definition

An equivalence class consists of a set of data that is
treated the same by the module or that should
produce the same result. Any data value within a
class is equivalent, in terms of testing, to any other
value.

Introduction: Assumptions

Specifically, we would expect that:

▪ If one test case in an equivalence class detects a defect, all
other test cases in the same equivalence class are likely to
detect the same defect.

▪ If one test case in an equivalence class does not detect a
defect, no other test cases in the same equivalence class is
likely to detect the defect.

Introduction: Solution 3

If (applicantAge >= 0 && applicantAge <=16)
hireStatus="NO";
If (applicantAge >= 16 && applicantAge <=18) hireStatus="PART";
If (applicantAge >= 18 && applicantAge <=41) hireStatus="FULL";
// strange statements follow
If (applicantAge == 42 && applicantName == "Lee")
hireStatus="HIRE NOW AT HUGE SALARY";
If (applicantAge == 42 && applicantName <> "Lee")
hireStatus="FULL";
// end of strange statements
If (applicantAge >= 43 && applicantAge <=55) hireStatus="FULL";
If (applicantAge >= 55 && applicantAge <=99) hireStatus="NO";

Introduction: Ready?

Now, are we ready to begin testing?

Probably not.

What about input values like 969, -42,
FRED, and &$#!@? Should we create
test cases for invalid input?

The answer is, as any good consultant
will tell you, "it depends“.

Technique

Technique: Steps

1. Identify the equivalence classes.

2. Create a test case for each equivalence class.

You could create additional test cases for each
equivalence class if you have time and money.

Additional test cases may make you feel warm and
fuzzy, but they rarely discover defects the first
doesn't find.

Technique: Continuous

Continuous equivalence classes

For a valid input we might choose $1,342/month. For invalids
we might choose $123/month and $90,000/month.

Technique: Discrete

Discrete equivalence classes

For a valid input we might choose 2 houses. Invalids could be
-2 and 8.

Technique: Array

Single selection equivalence classes

For a valid input we must use "person." For an invalid we could
choose "corporation" or "trust" or any other random text
string. How many invalid cases should we create? We must
have at least one; we may choose additional tests for
additional warm and fuzzy feelings.

Technique: Array

Multiple selection equivalence class

While the rule says choose one test case from the valid
equivalence class, a more comprehensive approach would be
to create test cases for each entry in the valid class. That
makes sense when the list of valid values is small.

Technique: Contradictions

But, if this were a list of the fifty states, and the various
territories of the United States, would you test every one of
them? What if in the list were every country in the world?

The correct answer, of course, depends on the risk to the
organization if, as testers, we miss something that is vital.

Technique: Combination

Rarely we will have the time to create individual tests for
every separate equivalence class of every input value.

Test cases of valid data values.

Monthly
Income

Number of
Dwellings

Applicant
Dwelling

Types
Result

$5,000 1 Person Condo Valid
$1,389 4 Person SingleFam Valid

$10,000 3 Person Townhouse Valid

Technique: All invalid

A test case of invalid data values.

Monthly
Income

Number of
Dwellings

Applicant
Dwelling

Types
Result

$100 8 Partnership Treehouse Invalid

If the system accepts this input as valid, clearly the system is
not validating the four input fields properly. If the system
rejects this input as invalid, it may do so in such a way that the
tester cannot determine which field it rejected. For example:
ERROR: 653X-2.7 INVALID INPUT

Technique: One invalid

In many cases, errors in one input field may cancel out or
mask errors in another field so the system accepts the data as
valid. A better approach is to test one invalid value at a time to
verify the system detects it correctly.

A set of test cases varying invalid values one by one.

Monthly
Income

Number of
Dwellings

Applicant
Dwelling

Types
Result

$100 1 Person SingleFam Invalid
$1,342 0 Person Condo Invalid
$1,342 1 Corporation Townhouse Invalid
$1,342 1 Person Treehouse Invalid

Technique: Varying values

For additional warm and fuzzy feelings, the inputs (both valid
and invalid) could be varied.

Monthly
Income

Number of
Dwellings

Applicant
Dwelling

Types
Result

$100 1 Person SingleFam Invalid

$1,342 0 Person Condo Invalid

$5,432 3 Corporation Townhouse Invalid

$10,000 2 Person Treehouse Invalid

A set of test cases varying invalid values one by one but also
varying the valid values.

Technique: Tips

Another approach to using equivalence classes is to
examine the outputs rather than the inputs.

Divide the outputs into equivalence classes, then
determine what input values would cause those outputs.
This has the advantage of guiding the tester to examine,
and thus test, every different kind of output. But this
approach can be deceiving.

In the previous example, for the human resources
system, one of the system outputs was NO, that is, Don't
Hire. A cursory view of the inputs that should cause this
output would yield {0, 1, ..., 14, 15}. Note that this is not the
complete set. In addition {55, 56, ..., 98, 99} should also
cause the NO output.

It's important to make sure that all potential outputs can
be generated, but don't be fooled into choosing
equivalence class data that omits important inputs.

Examples

Examples: 1

No invalid choices.

It reduces the number of test cases the tester must create.

Only the valid inputs {Buy, Sell} need to be exercised.

Valid inputs: {Buy, Sell}.

Invalids: {Trade, Punt, ...}.

What about "buy", "bUy", "BUY"? Are these valid or invalid entries? The tester
would have to refer back to the requirements to determine their status.

Examples: 2

Input to this field can be between one and four numeric
characters (0, 1, ..., 8, 9) with a valid value greater or equal to 1 and
less than or equal to 9999.

Valid inputs are {1, 23, 456, 7890}.

Invalid inputs are {-42, 0, 1.2, 12345, SQE, $#@%}.

Examples: 3

The valid symbols are {A, AA, AABC, AAC, ..., ZOLT, ZOMX, ZONA,
ZRAN}. The invalid symbols are any combination of characters not
included in the valid list.

Valid inputs are {A, AL, ABE, ACES, AKZOY}.

Invalid inputs are {C, AF, BOB, CLUBS, AKZAM, 42, @#$%}.

Examples: 4

Rarely will we create separate sets of test cases for each input. Generally it is
more efficient to test multiple inputs simultaneously within tests. For example,
the following tests combine Buy/Sell, Symbol, and Quantity.

A set of test cases varying invalid values one by one.

Buy/Sell Symbol Quantity Result
Buy A 10 Valid
Buy C 20 Invalid
Buy A 0 Invalid
Sell ACES 10 Valid
Sell BOB 33 Invalid
Sell ABE -3 Invalid

Applicability and
Limitations

Applicability and Limitations

▪ Equivalence class testing can significantly reduce the
number of test cases that must be created and executed. It
is most suited to systems in which much of the input data
takes on values within ranges or within sets. It makes the
assumption that data in the same equivalence class is, in
fact, processed in the same way by the system. The simplest
way to validate this assumption is to ask the programmer
about their implementation.

▪ Let your designers and programmers know when they have
helped you. They'll appreciate the thought and may do it
again.

Applicability and Limitations

▪ Very often your designers and programmers use GUI design
tools that can enforce restrictions on the length and content
of input fields. Encourage their use. Then your testing can
focus on making sure the requirement has been
implemented properly with the tool.

▪ Equivalence class testing is equally applicable at the unit,
integration, system, and acceptance test levels. All it
requires are inputs or outputs that can be partitioned based
on the system's requirements.

Summary

Summary

▪ Equivalence class testing is a technique used to
reduce the number of test cases to a
manageable size while still maintaining
reasonable coverage.

▪ This simple technique is used intuitively by
almost all testers, even though they may not be
aware of it as a formal test design method.

▪ An equivalence class consists of a set of data
that is treated the same by the module or that
should produce the same result. Any data value
within a class is equivalent, in terms of testing,
to any other value.

Practice

Practice

▪ ZIP Code – five numeric digits.

▪ Last Name – one through fifteen characters (including
alphabetic characters, periods, hyphens, apostrophes,
spaces, and numbers).

▪ User ID – eight characters at least two of which are
not alphabetic (numeric, special).

▪ Student ID – eight characters. The first two represent
the student's home campus while the last six are a
unique six-digit number. Valid home campus
abbreviations are: AN, Annandale; LC, Las Cruces;
RW, Riverside West; SM, San Mateo; TA, Talbot; WE,
Weber; and WN, Wenatchee.

Practice: Answers 1

▪ ZIP Code – five numeric digits.

Length

Valid: 5

Invalid: 3; 20

Characters

Valid: numeric digits

Invalid: special; alphabetical

Example Result Comment

12345 Valid Length, digits

AbcDZ Invalid Alphabetical

‘ –(: Invalid Special

129 Invalid Length <

12345678901234567890 Invalid Length >

Is this Zip Code really
valid? Is it real?

Practice: Answers 2

▪ Last Name – one through fifteen characters (including
alphabetic characters, periods, hyphens, apostrophes,
spaces, and numbers).

Length

Valid: 7

Invalid: 0; 19

Characters

Valid: alphabetic; numeric; .; -; ; “

Invalid: all other special

Example Result Comment

Co.- 1” Valid Length, characters

Invalid Length <

ABCDEFghijklmnopqrs Invalid Length >

!@#;$%: Invalid Other special

Practice: Answers 3

▪ User ID – eight characters at least two of which are
not alphabetic (numeric, special).

Length

Valid: 8

Invalid: 2; 11

Number of numeric and special characters

Valid: 2

Invalid: 1; 10

Example Result Comment

1!abcDYZ Valid Length, number

2% Invalid Length <

0#?(cyzagq4 Invalid Length >

abcptu6w Invalid Number <

“(/\,.123+ Invalid Number >

Practice: Answers 4

▪ Student ID – eight characters. The first two represent the student's home campus while
the last six are a unique six-digit number. Valid home campus abbreviations are: AN,
Annandale; LC, Las Cruces; RW, Riverside West; SM, San Mateo; TA, Talbot; WE,
Weber; and WN, Wenatchee.

Length

Valid: 8

Invalid: 5; 10

Characters position

Valid: first 2

Invalid: 3d and 4th

Example Result Comment

AN123409 Valid Length, position, campus, unique

LC136 Invalid Length <

TA98765432 Invalid Length >

12SM4446 Invalid Position

AC963201 Invalid Campus

AN123409 Invalid Not unique

Campus

Valid: in the list

Invalid: other

Unique

Valid: unique

Invalid: not unique

Practice: Answers 5

N ZIP Code Last Name User ID Student ID Result

1 12345 Co.- 1” 1!abcDYZ AN123409 Valid

2 AbcDZ KolirtypUedv LDKW9456 LC874562 Invalid

3 ‘ –(: .- 2”34567890'. Poief63t RW456732 Invalid

4 129 …………. &)^ASGYK SM687414 Invalid

5 12345678901234567890 ------------ KOfd27,. TA312458 Invalid

6 67890 !@#;$%:? WE965874 Invalid

7 11111 !@#;$%: 12378964 WN221133 Invalid

8 23487 ABCDEFghijklmnopqrs 09876,=_ SM747498 Invalid

9 89453 ''' 2% TA321987 Invalid

10 09342 PODSAF 0#?(cyzagq4 WE126542 Invalid

11 34567 lju77 fsd 5 abcptu6w WN369874 Invalid

12 09789 Lopwefdvc “(/\,.123+ AN546887 Invalid

13 19823 se.rt3456 Ty_1236* LC136 Invalid

14 73287 1594 ;ldfskt8 TA98765432 Invalid

15 64785 43 3333UOPQ 12SM4446 Invalid

16 98883 R pn7f1uN6 AC963201 Invalid

17 19823 yu n8m!c~2{ AN123409 Invalid

References

