

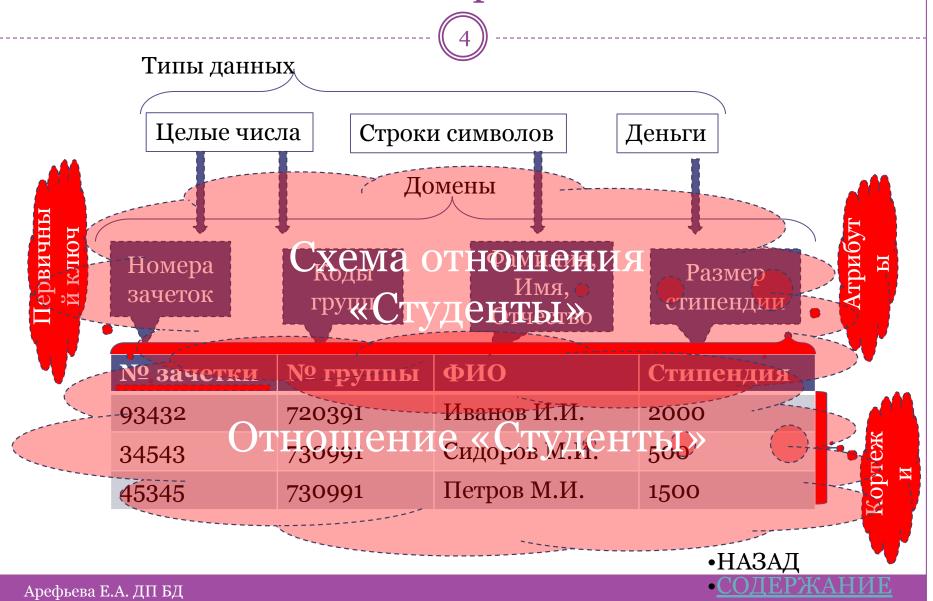
АРЕФЬЕВА Е.А.

Содержание даталогического проектирования баз данных

2

- 1) выбор СУБД и определение модели представления данных
- 2) преобразование сущностей концептуальной модели с учетом выбранной модели представления данных

Нормализация Алгоритм


- 3) определение состава хранящихся в БД и вычисляемых показателей
- 4) введение искусственных идентификаторов

Критерии оценки базы данных

- Адекватность
- Полнота
- Адаптируемость к изменениям предметной области
- Адаптация к изменениям информационных потребностей пользователей
- Адаптация к изменению программных и технических средств
- Универсальность
- Сложность
- Степень дублирования данных в БД
- Сложность обработки данных
- Объем требуемой памяти
- Скорость обработки информации

Реляционная модель представления данных

Реляционная модель представления данных

- *Схема отношения* это именованное множество пар {имя атрибута, имя домена (или типа)}.
- **Кортеж** это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения.
- *Отношение* это множество кортежей, соответствующих одной схеме отношения.
- Реляционная база данных это набор отношений.

•НАЗАД

Требования к реляционной модели

6

- •Свойства реляционной модели
- •Отсутствие кортежей-дубликатов
- •Отсутствие упорядоченности кортежей
- •Отсутствие упорядоченности атрибутов
- •Атомарность значений атрибутов
- •Требования к построению модели
 - •Обеспечить быстрый доступ к данным в таблицах
 - •Исключить ненужное повторение данных
 - •Обеспечить целостность данных

Свойств реляционной

Нормализация отношений

7

Последовательность нормальных форм

- первая нормальная форма (1NF);
- вторая нормальная форма (2NF);
- третья нормальная форма (3NF);
- нормальная форма Бойса-Кодда (BCNF);
- четвертая нормальная форма (4NF);
- пятая нормальная форма, или нормальная форма проекциисоединения (5NF или PJ/NF).

Основные свойства нормальных форм

- каждая следующая нормальная форма в некотором смысле лучше предыдущей;
- при переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются.

•НАЗАД

Некоторые понятия

Определение 1. Функциональная зависимость

• В отношении R атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: R.X (r) R.Y.

Определение 2. Транзитивная функциональная зависимость

 Функциональная зависимость R.X -> R.Y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости R.X -> R.Z и R.Z -> R.Y и отсутствует функциональная зависимость R.Z --> R.X.

Определение 3. Неключевой атрибут

 Неключевым атрибутом называется любой атрибут отношения, не входящий в состав первичного ключа.

Определение 4. Взаимно независимые атрибуты

 Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других.

1 и 2 нормальные формы

9

Первая нормальная форма (1NF)

- Значения всех атрибутов отношения атомарны.
- Отсутствуют повторяющиеся группы атрибутов.

Вторая нормальная форма

- Один ключевой атрибут Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый неключевой атрибут полностью зависит от первичного ключа.
- Несколько ключей Отношение R находится во второй нормальной форме в том и только в том случае, когда оно находится в 1NF, и каждый неключевой атрибут полностью зависит от каждого ключа R.

Пример. Исходное отношение

СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ

- (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
- Первичный ключ:
- COTP_HOMEP, ΠΡΟ_HOMEP
- Функциональные зависимости:
- COTP_HOMEP -> COTP_3APΠ
- COTP_HOMEP -> ОТД_HOMEP
- ОТД_НОМЕР -> СОТР_ЗАРП
- СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН

Пример. Преобразованные отношения

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР)

- Первичный ключ:
- COTP_HOMEP
- Функциональные зависимости:
- COTP_HOMEP -> COTP_3APΠ
- СОТР_НОМЕР -> ОТД_НОМЕР СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
- Первичный ключ:
- COTP_HOMEP, ΠΡΟ_HOMEP
- Функциональные зависимости:
- СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН

3 нормальная форма

Третья нормальная форма.

- Единственный ключ Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.
- Составной ключ Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 1NF, и каждый неключевой атрибут не является транзитивно зависимым от какого-либо ключа R.

Пример. Исходное отношение

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР)

- Первичный ключ:
- COTP_HOMEP
- Функциональные зависимости:
- COTP_HOMEP -> COTP_3APΠ
- COTP HOMEP -> OTД HOMEP
- ОТД_НОМЕР -> СОТР_ЗАРП

Пример. Преобразованные отношения

СОТРУДНИКИ (СОТР_НОМЕР, ОТД_НОМЕР)

- Первичный ключ:
- COTP_HOMEP
- Функциональные зависимости:
- COTP_HOMEP -> ОТД_НОМЕР
 ОТДЕЛЫ (ОТД_НОМЕР, СОТР_ЗАРП)
- Первичный ключ:
- ОТД_НОМЕР
- Функциональные зависимости:
- ОТД НОМЕР -> СОТР ЗАРП

Нормальная форма Бойса-Кодда

15

Детерминант

 Детерминант - любой атрибут, от которого полностью функционально зависит некоторый другой атрибут.

Нормальная форма Бойса-Кодда

• Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом.

Пример. Исходные отношения

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ПАСПОРТ, ПРО_НОМЕР, СОТР_ЗАДАН)

- Возможные ключи:
- СОТР НОМЕР, ПРО НОМЕР
- СОТР_ПАСПОРТ, ПРО_НОМЕР
- Функциональные зависимости:
- COTP_HOMEP -> COTP_ΠΑCΠΟΡΤ
- COTP HOMEP -> ΠΡΟ HOMEP
- COTP_ИMЯ -> COTP_HOMEP
- СОТР_ИМЯ -> ПРО_НОМЕР
- COTP_HOMEP, ПРО_HOMEP -> COTP_ЗАДАН
- СОТР_ПАСПОРТ, ПРО_НОМЕР -> СОТР_ЗАДАН

Пример. Преобразованные отношения

СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ПАСПОРТ)

- Возможные ключи:
- COTP HOMEP
- СОТР_ПАСПОРТ
- Функциональные зависимости:
- COTP_HOMEP -> COTP_ΠΑCΠΟΡΤ
- СОТР_ПАСПОРТ -> СОТР_НОМЕР СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)
- Возможный ключ:
- COTP_HOMEP, ΠΡΟ_HOMEP
- Функциональные зависимости:
- COTP_HOMEP, ПРО_HOMEP -> COTP_ЗАДАН

4 нормальная форма

Многозначные зависимости

В отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.В в том и только в том случае, если множество значений В, соответствующее паре значений А и С, зависит только от А и не зависит от С.

Теорема Фейджина

• Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A -> -> В | С. Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений.

Четвертая нормальная форма

• Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A -> -> В все остальные атрибуты R функционально зависят от A.

Пример

ПРОЕКТЫ (ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН)

- В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости:
- ΠΡΟ_HOMEP -> -> ΠΡΟ_COTP
- ПРО_НОМЕР -> -> ПРО_ЗАДАН

Результат

- ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР)
- ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН)

5 нормальная форма

Зависимость соединения

• Отношение R (X, Y, ..., Z) удовлетворяет зависимости соединения * (X, Y, ..., Z) в том и только в том случае, когда R восстанавливается без потерь путем соединения своих проекций на X, Y, ..., Z.

Пятая нормальная форма

• Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.

Пример

СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР)

- Введем следующие имена составных атрибутов:
- CO = {COTP_HOMEP, OTД_HOMEP}
- $C\Pi = \{COTP_HOMEP, \Pi PO_HOMEP\}$
- $O\Pi = \{OT \coprod HOMEP, \Pi PO HOMEP\}$
- Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения: * (СО, СП, ОП)

Результат:

- СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР)
- СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР)
- ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР)

Нормализация отношений

Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих лучшими свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая.

•Первая нормальная форма

- значения всех атрибутов отношения атомарны
- должны отсутствовать повторяющиеся группы полей
- четко определены идентификаторы

•Вторая нормальная форма

- отношение находится в $1H\bar{\Phi}$
- каждый неключевой атрибут полностью зависит от первичного ключа

•Третья нормальная форма

- отношение находится в 2НФ
- каждый неключевой атрибут нетранзитивно зависит от первичного ключа

Пример нормализации отношений

- Исходное отношение
- 1НФ. № зачетки однозначно идентифицирует студента вуза, составной атрибут ФИО разбит на атомарные, нет повторяющихся групп
- 2НФ. Атрибут «Специальность» зависит от №группы, поэтому он вынесен в отдельное отношение. Все атрибуты отношений зависят от первичных ключей
- 3НФ. Атрибут «Оценки» зависит не только от первичного ключа, но и от предмета и даты сдачи, которые отсутствуют в отношении. Эти элементы выделены в отдельное отношение

Студент	
<u>№ зачетки</u>	PK
№ группы ФИО Специальность Оценки	

Алгоритм перехода от ER-модели к реляционной модели данных

Простые объекты и единичные свойства

Множественные свойства объектов

Условные свойства объектов

Составные свойства объектов

- •Строится отношение, в состав которого входят идентификатор и реквизиты, соответствующие
- •СТринстинавийние составным ключем первичный ключ сущности и соответствующий реквизит
- •Включается как обычный атрибут
- •Строится отдельное отношение с
- Всетувный ключем ставится в соответствие один атрибут
- •Каждому из составляющих элементов ставится в соответствие одно поле

Простые объекты и единичные свойства

Алгоритм перехода от ER-модели к реляционной модели данных

25

Отображение связи «многие ко многим»

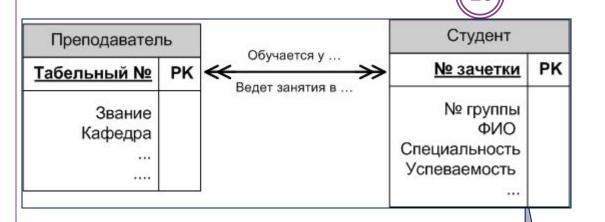
•Введение неключевого атрибута, соответствую щего

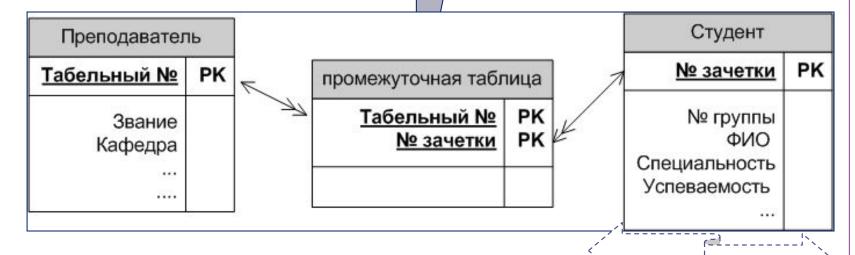
Отображение связи «один ко многим»

Нервичному каронцающее етиниченое отножения, в множествени одной из сущности

Отображение связи «один к одному»

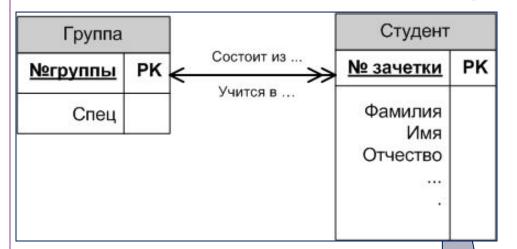
•Введение неключевой атрибут в одно из отношений, соответствую щий первичному

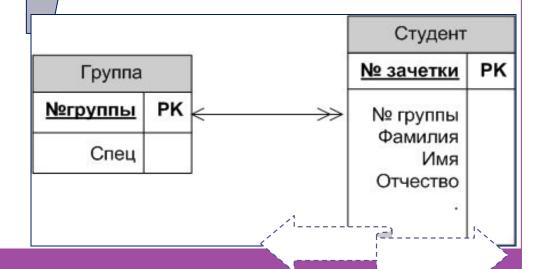

ключу


•Введение промежуточного отношения с составным ключем, включающим первичные ключи исходных сущностей

Отображение связи «многие ко многим»

Арефьева Е.А. ДП БД


Преобразование связи «Многие ко многим»



Преобразование связи «Один ко многим»

(27)

Алгоритм перехода от ER-модели к реляционной модели данных

28

•Всему Агрегированнобъектукты поставить в соответствие отношение

Обобщенные объекты

Составные объекты

- •Каждой категории соответствует отдельное отношение
- •Отдельные взаимосвяза
- •Ремение об отображении составных объектов принимается на основе типов связей между объектами

•Каждому объекту соответствует отдельное отношение, агрегированный объект имеет составной ключ из первичных ключей связанных с ним отношений

Агрегированные объекты

Простые объекты:

Единичные свойства

Множественные свойства

Условные свойства

Составные свойства

Вычисляемые поля

Связь:

«Многие ко многим»

«Один к многим»

«Один к одному»

Результаты даталогического проектирования

Преобразование ER-диаграммы в реляционную модель

- •нормализация отношений ... или
- •алгоритм перехода от базовой ER-диаграммы к реляционной модели данных

Логическая модель

•графическое отображение нормализованных схем отношений и связей между ними

Преобразов реляционну

СПАСИБО ЗА ВНИМАНИЕ!!!

•НАЗАД

•СОДЕРЖАНИЕ