Operating Systems:
Internals and Design Principles, 6/E
William Stallings

Chapter 3
Process Description and Control

Dave Bremer
Otago Polytechnic, N.Z.
©2008, Prentice Hall

Q\
% Roadmap

- How are processes represented and
controlled by the OS.

— Process states which characterize the
behaviour of processes.

— Data structures used to manage processes.

— Ways in which the OS uses these data
structures to control process execution.

— Discuss process management in UNIX SVR4.

g

3 _
% v Requirements of an

@ Operating System
* Fundamental Task: Process Management

* The Operating System must
— Interleave the execution of multiple processes

— Allocate resources to processes, and protect
the resources of each process from other
processes,

— Enable processes to share and exchange
information,

— Enable synchronization among processes.
.

% \ Concepts

* From earlier chapters we saw:

— Computer platforms consists of a collection of
hardware resources

— Computer applications are developed to
perform some task

— It is inefficient for applications to be written
directly for a given hardware platform

o
[
peat

=y

-3
%Eﬁ) \ Concepts cont...

— OS provides an interface for applications to
use

— OS provides a representation of resources
that can be requested and accessed by
application

=y

%ﬁ The OS Manages
@ = Execution of Applications

* Resources are made available to multiple
applications

* The processor is switched among multiple
application

* The processor and |/O devices can be
used efficiently

=y

2
%Eﬁ) " Whatis a “brocess™?

* A program in execution

* An instance of a program running on a
computer

* The entity that can be assigned to and
executed on a processor

* A unit of activity characterized by the
execution of a sequence of instructions, a
current state, and an associated set of
system instructions

o |
%Eﬁ) \ Process Elements

» A process is comprised of:
— Program code (possibly shared)
— A set of data

— A number of attributes describing the state of
the process

=y

o |
@Eﬁ) \ Process Elements

* While the process is running it has a
number of elements including
— |dentifier
— State
— Priority
— Program counter
— Memory pointers
— Context data
— |/O status information
— Accounting information

Q\
% Process Control Block

« Contains the process o
elements Priority

» Created and manage by ea——
the operating system Contest data

» Allows support for —
multiple processes i

=y

Figure 3.1 Simplified Process Control Block

,r@\
@Eﬁ) Trace of the Process

* The behavior of an individual process is
shown by listing the sequence of
Instructions that are executed

 This list is called a Trace

* Dispatcher is a small program which
switches the processor from one process
to another

| Process Execution

Add';“ Main Memor y ° ConSider th ree
Dispatcher processes being
executed

 All are in memory
o (plus the dispatcher)

* Lets ignore virtual
Procems G memory for this.

%’\ Trace from the
Q/ \

processes point of view:
* Each process runs to completion

5000 8000 12000

(a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

& Figure 3.3 Traces of Processes of Figure 3.2

NENEN

X Trace from Processors

| point of view

z . 5000 27 12004
Address Main Memory 5001 28 12005
0 5002 Timeout
5003 29 100
100) 5004 30 101
Dispatcher 5005 31102
] Timeout 32 103
100 33 104
101 34 105
5000 P 102 —SS006
103 36 5007
Process A 104 37 5008
105 38 5009
SO00 | 39 5010
8001 40 5011
8000 8002 Timeout
8003 T 100
LD Request 42 101
Process B 100 43 102
101 4 103
102 45 104
103 46 105
12000 104 xT 12000
105 48 12007
12000 49 12008
Process C 12001 S0 12009
12002 51 12010
12003 52 12011
Timeout
100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

Q\
% Roadmap

— How are processes represented and
controlled by the OS.

= Process states which characterize the
behaviour of processes.

— Data structures used to manage processes.

— Ways in which the OS uses these data
structures to control process execution.

— Discuss process management in UNIX SVR4.

.

Q\
@EﬁTwo-State Process Model

* Process may be in one of two states

— Running
— Not-running
Dispatch
T RuI:f:mg | Running —— e
Pause

(a) State transition diagram

Exit

Pause

(b) Queuing diagram

Etc ... processes moved by the dispatcher of the OS to the CPU then back
to the queue until the task is competed

=y

E:

5
ﬁ \Process Birth and Death

New batch job Normal Completion
Interactive Login Memory unavailable
Created by OS to Protection error

provide a service

Spawned by existing Operator or OS
Process Intervention

=y

See tables 3.1 and 3.2 for more E

o
%Eﬁ) \ Process Creation

* The OS builds a data structure to manage
the process

 Traditionally, the OS created all processes
— But it can be useful to let a running process
create another
* This action is called process spawning

— Parent Process is the original, creating,
process

— Child Process is the new process

2 .

\] "
@Eﬁs Process Termination
* There must be some way that a process

can indicate completion.

* This indication may be:

— A HALT instruction generating an interrupt
alert to the OS.

— A user action (e.g. log off, quitting an
application)

— A fault or error

— Parent process terminating

=y

@ New

Admit

Five-State
Process Model

{ " Blocked

Figure 3.6 Five-State Process Model

Using Two Queues

Ready Queue Release
Admit Dispatch .E -
‘ e Processor |

Timeout
B
Blocked Queue
Event _J J_ i Event Wait
Occurs —

(a) Single blocked queue

°
| Multiple Blocked Queues

Ready Queue Release -
Admit Dispatch i
L= #» Processor
4
Timeout
el
Event 1 Queue Bt Wk
ven ai
Event 1 -
Occurs
Event 2 Queune
Event 2 g™ Event 2 Wait
Occurs
L
*
L]
Event n Queue
Event n " Event n Wait
|
Occurs

(b) Multiple blocked queues

,Q\
xﬁ) Suspended Processes

®

* Processor is faster than |I/O so all
processes could be waiting for |/O

— Swap these processes to disk to free up more
memory and use processor on more
processes

» Blocked state becomes suspend state
when swapped to disk
* Two new states

— Blocked/Suspend o
— Ready/Suspend

One Suspend State

o Admit Dispatch J{f. o
’»¢N9W _'.'* Readv - unmng —-D- Emt

i
'."y"

Suspend
”Snspend - g Blocked

(a) With One Suspend State

=

o

(b) With Two Suspend States

§§'\ Reason for Process
@/ \

Suspension

Swapping The OS needs to release sufficient main memory to
bring in a process that is ready to execute.

Other OS Reason OS suspects process of causing a problem.
Interactive User e.g. debugging or in connection with the use of a
Request resource.

Timing A process may be executed periodically (e.g., an

accounting or system monitoring process) and may
be suspended while waiting for the next time.

Parent Process A parent process may wish to suspend execution of

Request a descendent to examine or modify the suspended
process, or to coordinate the activity of various
descendants. .

Table 3.3 Reasons for Process Suspension §

=y

Q\
% Roadmap

— How are processes represented and
controlled by the OS.

— Process states which characterize the
behaviour of processes.

» Data structures used to manage processes.

— Ways in which the OS uses these data
structures to control process execution.

— Discuss process management in UNIX SVR4.

g

Processes
and Resources

Virtual
Memory
(4
k4 h
/ \ ’ Computer
(4
d Resources
Main
Processor o /0 /0 M
emory
Figure 3.10 Processes and Resources (resource allocation at one snapshot in time) E

=y

%ﬁ Operating System
@ Control Structures

* For the OS is to manage processes and
resources, it must have information about
the current status of each process and
resource.

» Tables are constructed for each entity the
operating system manages

OS Control Tables

Process
Image
peefiipe{ Nemory Tables S
Process
Memory 1
Devices #~1 T/O Tables
Files
Processes =———f*1 File Tables
Primary Process Table
1 Process 1
Process 2
Process
Process 3 Image
. il Process
. n
|
Process n

Figure 3.11 General Structure of Operating System Control Tables

,Q\
@Eﬁ) Memory Tables

 Memory tables are used to keep track of
both main and secondary memory.

* Must include this information:
— Allocation of main memory to processes
— Allocation of secondary memory to processes

— Protection attributes for access to shared
memory regions

— Information needed to manage virtual memory

% /O Tables

* Used by the OS to manage the I/O
devices and channels of the computer.

* The OS needs to know

— Whether the I/O device is available or
assigned

— The status of I/O operation

— The location in main memory being used as
the source or destination of the I/O transfer

Lo}
[

§ﬁ) \ File Tables

* These tables provide information about:
— Existence of files
— Location on secondary memory
— Current Status
— other attributes.

« Sometimes this information is maintained
by a file management system

=y

o
[
peat

% Process Tables

- To manage processes the OS needs to
know details of the processes
— Current state
— Process ID
— Location in memory
— efc

* Process control block
— Process image is the collection of program.

Data, stack, and attributes

o |
&Eﬁ) \ Process Attributes

* We can group the process control block
information into three general categories:
— Process identification
— Processor state information
— Process control information

=y

o |
§ﬁ) \ Process ldentification

®

» Each process is assigned a unique
numeric identifier.

» Many of the other tables controlled by the
OS may use process identifiers to
cross-reference process tables

=y

%ﬁ Processor State
@ Information

* This consists of the contents of processor
registers.

— User-visible registers
— Control and status registers
— Stack pointers
* Program status word (PSW)
— contains status information
— Example: the EFLAGS register on Pentium

i
Processors

Pentium I
EFLAGS Register

1 21 16 /15

r- I‘I"‘IAVR N|(IO [OD|I|T|S|Z| (A| (P
Dip|r|C/M|F T| PL |F|F|F|F|F|F F F

ID = Identification flag DF = Direction flag

VIP = Virtual interrupt pending IF = Intermupt enable flag

VIF = Virtual interrupt flag TF = Trap flag

AC = Alignment check SF = Sign flag

VM = Virtual 8086 mode ZF = Zero flag

RF = Resume flag AF = Auxiliary carmry flag

NT = Nested task flag PF = Panty flag

IOPL = T/O prvilege level CF = Camy flag

OF = Overflow flag

Also see Table 3.6
Figure 3.12 Pentium II EFLAGS Register

§§'\ Process Control
@ Information

* This is the additional information needed
by the OS to control and coordinate the
various active processes.

— See table 3.5 for scope of information

=y

Q\

Structure of Process

.

Process
identification

Procassor state
information

Process control
information

User stack

Private user
address space
(programs, data)

Shared address
space

Process 1

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space
(programs, data)

Shared address
space

Process 2

Figure 313 User Processes in Virtual Memory

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space
(programs, data)

Shared address
space

Process n

Images in Virtual Memory

Process
» control
block

A\ Role of the
-

Process Control Block

* The most important data structure in an
OS

— |t defines the state of the OS

* Process Control Block requires protection

— A faulty routine could cause damage to the
block destroying the OS's ability to manage
the process

— Any design change to the block could affect
many modules of the OS

Q\
% Roadmap

— How are processes represented and
controlled by the OS.

— Process states which characterize the
behaviour of processes.

— Data structures used to manage processes.

= Ways in which the OS uses these data
structures to control process execution.

— Discuss process management in UNIX SVR4.

g

,rg\
§ﬁ) Modes of Execution

* Most processors support at least two
modes of execution

« User mode
— Less-privileged mode
— User programs typically execute in this mode

« System mode
— More-privileged mode
— Kernel of the operating system

=y

o
[
peat

o |
@Eﬁ) \ Process Creation

* Once the OS decides to create a new
process it:
— Assigns a unique process identifier
— Allocates space for the process
— Initializes process control block
— Sets up appropriate linkages
— Creates or expand other data structures

=y

o
[
peat

,Q\
@Eﬁs Switching Processes

* Several design issues are raised regarding
process switching
— What events trigger a process switch?

— We must distinguish between mode switching
and process switching.

— What must the OS do to the various data
structures under its control to achieve a
process switch?

Lo}
[

=y

3
R\\/\Vhen to switch processes

A process switch may occur any time that the OS has gained control from the
currently running process. Possible events giving OS control are:

Interrupt External to the execution of Reaction to an asynchronous
the current instruction external event
Trap Associated with the execution Handling of an error or an
of the current instruction exception condition
Supervisor call Explicit request Call to an operating system
function
Table 3.8 Mechanisms for Interrupting the Execution of a Process E

=y

% \ Change of
\ Process State ...

* The steps in a process switch are:

1. Save context of processor including program
counter and other registers

2. Update the process control block of the
process that is currently in the Running state

3. Move process control block to appropriate
queue — ready; blocked; ready/suspend

g

% \ Change of
¥ Process State cont...

4. Select another process for execution
5

Update the process control block of the
process selected

6. Update memory-management data
structures

/. Restore context of the selected process

=y

,Q\
@Eﬁ) Is the OS a Process?

o If the OS is just a collection of programs
and if it is executed by the processor just
like any other program, is the OS a
process?

* |f so, how is it controlled?
— Who (what) controls it?

=y

Execution of the
Operating System
P [--- F

Kernel

(a) Separate kernel

os
a2 80 Fune-
tions
Process Switching Functions

(b) OS functions execute within user processes

Process Switching Functions

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

2
\
%T“) Non-process Kernel

P

®

» Execute kernel outside of any process

* The concept of process is considered to
apply only to user programs

— Operating system code is executed as a
separate entity that operates in privileged mode

- e s @
-

Kernel

o
(a) Separate kernel e
e 8

=y

§§’\ Execution Within
Y \ User Processes

 Execution Within User
Processes

— Operating system software within
context of a user process

— No need for Process Switch to
run OS routine

_ Process
identification

Processor state
information

Process control
information

User stack

Private user
address space
(programs, data)

Kernel stack

Process Switching Functions
f (b) OS functions execute within user processes

Pl p‘.’. Py
oS Os oS
F‘l“ Func L B ﬂ'-.c 4
tioms tons tioms

Figure 3.16 Process Image: Operating
System Executes within

User Space

Operating System

* Process-based operating system

— Implement the OS as a collection of system
process

xig'\ Process-based
@/ \

Process Switching Functions

(¢) OS functions execute as separate processes

=y

2
@Eﬁ) \ Security Issues

* An OS associates a set of privileges with
each process.
— Highest level being administrator, supervisor,
or root, access.
* A key security issue in the design of any
OS is to prevent anything (user or
process) from gaining unauthorized
privileges on the system
— Especially - from gaining root access.

3
§ﬁ) \ System access threats

®

* Intruders
— Masquerader (outsider)
— Misfeasor (insider)
— Clandestine user (outside or insider)

» Malicious software (malware)

=y

s\
% \ Countermeasures:
9

Intrusion Detection

* Intrusion detection systems are typically
designed to detect human intruder and
malicious software behaviour.

* May be host or network based

* Intrusion detection systems (IDS) typically
comprise
— Sensors

— Analyzers -
— User Interface

s\
% \ Countermeasures:
®

Authentication

* Two Stages:
— |dentification
— Verification
* Four Factors:
— Something the individual knows
— Something the individual possesses

— Something the individual is (static biometrics)
— Something the individual does (dynamic

biometrics)

Access Control

* A policy governing access to resources

* A security administrator maintains an
authorization database

— The access control function consults this to
determine whether to grant access.

* An auditing function monitors and keeps a
record of user accesses to system

resources.
[

s\
% \ Countermeasures:
%

|
% \ Countermeasures:
@ Firewalls

* Traditionally, a firewall is a dedicated
computer that:
— interfaces with computers outside a network

— has special security precautions built into it to
protect sensitive files on computers within the
network.

o
[
peat

=y

Q\
% Roadmap

— How are processes represented and
controlled by the OS.

— Process states which characterize the
behaviour of processes.

— Data structures used to manage processes.

— Ways in which the OS uses these data
structures to control process execution.

= Discuss process management in UNIX SVR4.

g

T Unix SVR4
B

System V Release 4

» Uses the model of fig3.15b where most of
the OS executes in the user process

* System Processes - Kernel mode only

 User Processes

— User mode to execute user programs and
utilities
— Kernel mode to execute instructions that belong

to the kernel.

Process Switching Functions
(b) OS functions execute within user processes

B

UNIX Process State

¥ Transition Diagram

fork
Created
Preempted
return -~ enough not enough memory
to user A \“ memory, (swapping system only)
~
.
.
~
User ¢ ‘\‘
Running preemp ~
swap out
return Ready to Run PReady to Run
reschedule
In Memory “# — Swapped
process b swap in
system call,
intetmpt Kernel -‘ .‘.
Running
wakeu wakeu
interrupt, Sleep P P
interrupt return exit
: Asleep in swap out Sleep,
pmbe Memory > Swapped

Figure 3.17 UNIX Process State Transition Diagram

®

.
Eﬁs " UNIX

Process States

User Running
Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kemel mode.
Readv torun as soon as the kemel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state).

Process is readv to run, but the swapper must swap the process into
main memory before the kemel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kemel to user mode, but the kemel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready torun.

Process no longer exists, but it leaves a record for its parent process
to collect.

,Q\
@Eﬁ) A Unix Process

* A process in UNIX is a set of data
structures that provide the OS with all of
the information necessary to manage and
dispatch processes.

» See Table 3.10 which organizes the
elements into three parts:
— user-level context,

— register context, and
— system-level context.

o
%Eﬁ) \ Process Creation

* Process creation is by means of the kernel
system call,fork().

* This causes the OS, in Kernel Mode, to:

1. Allocate a slot in the process table for the
NEew Process.

2. Assign a unique process ID to the child
process.

3. Copy of process image of the parent, with
the exception of any shared memory.

cont...

4. Increment the counters for any files owned
by the parent, to reflect that an additional
process now also owns those files.

5. Assign the child process to the Ready to
Run state.

6. Returns the ID number of the child to the
parent process, and a 0 value to the child
Process.

%ﬁ Process Creation
%

Lo}
[

=y

,rg\
@Eﬁ) After Creation

* After creating the process the Kernel can
do one of the following, as part of the
dispatcher routine:

— Stay in the parent process.
— Transfer control to the child process
— Transfer control to another process.

=y

