
АЗОТСОДЕРЖАЩИЕ ПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Нитропроизводные

углеводородов

АЛИФАТИЧЕС КИЕ

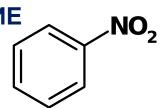
CH₃-CH₂-NO₂

первичны

e

CH₃-CH-CH₃ NO₂ вторичны

CH₃


CH₃-C-CH₂-CH₃

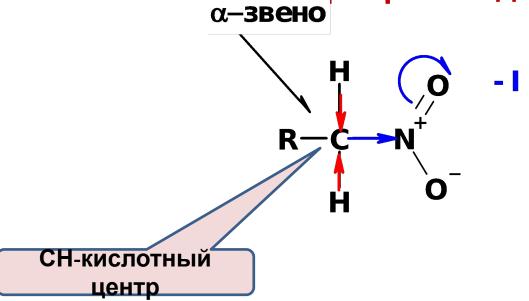
е

третичны

e

АРОМАТИЧЕСК ИЕ NO₂

Способы получения


1. Нитрования алканов (реакция

2. Реакция галогеналканов с нитритами натрия и серебра

3. Нитрование ароматических

углеводородов
$$HNO_3$$
 H_2SO_4 HOH

Химические свойства нитропроизводных

- 1. Реакции с участием УВ радикала
- 2. Реакции с участием нитрогруппы

Реакции с участием углеводородного радикала

1. Взаимодействие со щелочами. Ацинитротаутомерия N

$$CH_{3} \stackrel{\bullet}{CH_{2}} \stackrel{\bullet}{Na} \stackrel{\bullet}{Na} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{2}} \stackrel{\bullet}{Na} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{2}} \stackrel{\bullet}{Na} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet}{CH_{2}} \stackrel{\bullet}{Na} \stackrel{\bullet}{CH_{3}} \stackrel{\bullet$$

Нитросоединения проявляют СН-кислотные свойства за счёт сильного электроноакцепторного действия нитрогруппы

2. Взаимодействие с

3. Взаимодействие с карбонильными

соединениями

галогенами

4. Взаимодействие с азотистой

кислотой

Реакция с участием нитрогруппы

Восстановление нитросоединений

$$R-NO_2 \xrightarrow{[H]} R-NH_2$$

Зинин Николай Николаевич

аммиак

Алифатическ ие:

- CH₃-CH₂-NH₂

первичные

- CH₃-CH₂-NH-CH₂-CH₃

вторичные

- mpemuчные ch₃C CH₃

Ароматически

e: NH₂

Четвертичные аммониевые соли и основания

Способы получения

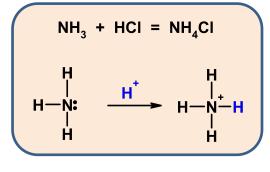
1. Восстановление нитросоединений

2. Алкилирование аммиака и

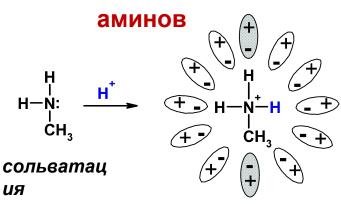
аминов

3. Восстановление

амидов


4. Восстановление оснований

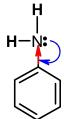
Шиффа


Кислотно-основные свойства аминов

pH > 7

Основные свойства

ст ерические факт оры


+I эффект

2 x **+I** эффект

3 x **+I** эффект

СОЛИ

 p,π -сопряжение

Ряд убывания основности аминов в

четв. аммо**жиедкой фазе** вторичные алифатические > третичные ≈ первичные > ароматические основания > > четв. аммониевые

$$\begin{bmatrix} H \\ I_{+} \\ H - N - C_{2}H_{5} \\ CH_{3} \end{bmatrix} CI^{-}$$

не обладает основными свойствами

Кислотные свойства аминов

$$(CH_3)_2CH$$
 $(CH_3)_2CH$ $(CH_3)_2CH$ $(CH_3)_2CH$ $(CH_3)_2CH$ $(CH_3)_2CH$ $(CH_3)_2CH$

1. Алкилирование

аминов

лирование
$$CH_3$$
-Br CH_3 -Br

бромид

тетраметиламмония

2. Ацилирование аминов

$$CH_{3}-CH_{2}-C^{O}$$

$$CH_{3}-CH_{2}-C^{O}$$

$$-HCI$$

$$CH_{3}-CH_{2}-C^{O}$$

$$H$$

3. Взаимодействие аминов с азотистой кислотой

$$NaNO_2 + HCI \longrightarrow HNO_2 + NaCI$$
 $HNO_2 + HCI \longrightarrow H_2O + C\bar{I} + \bar{N}=O$

Первичные амины

R – алкильный радикал:

$$CH_3$$
- CH_2 - CH_2 - NH_2 $\xrightarrow{NaNO_2}$ $\left[CH_3$ - CH_2 - CH_2 - $N_2\right]$ + CI - \xrightarrow{HOH} CH_3 - CH_2 - CH_2 - OH

соль диазония

R – ароматический радикал:

Реакции ароматических солей диазония с выделением азота

Реакции ароматических солей диазония с сохранением азота

азосочетани e N=N N=N X=OH, NH₂, NR₂ и т.д.

$$\begin{bmatrix} & & & \\ & & & \end{bmatrix}$$
 \mathbf{CI}^{-} $\xrightarrow{\mathsf{SnCI}_2}$ \mathbf{NH} - \mathbf{NH}_2 фенилгидразин

Вторичные амины

Третичные амины