
Шероховатость и волнистость поверхностей

Параметры шероховатости

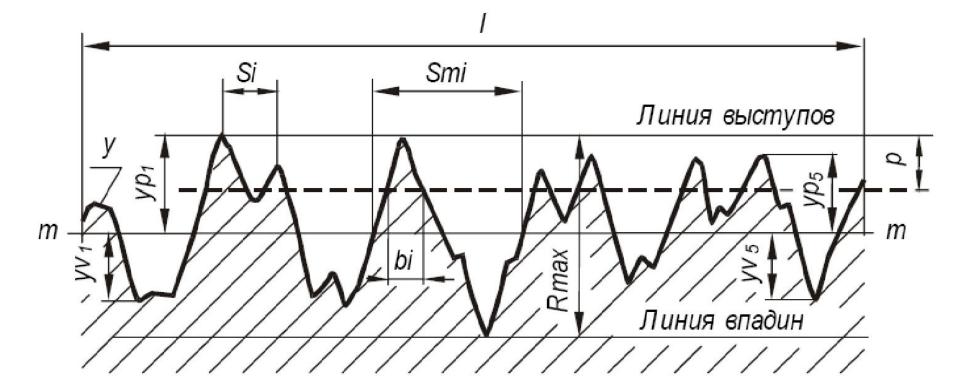
Шероховатость — ряд чередующихся выступов и впадин сравнительно малых размеров.

Параметры шероховатости

ГОСТ 2789-73 установлены следующие параметры шероховатости

1. **Среднее арифметическое отклонение профиля Ra** — это среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины:

$$R_a = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i|$$


где уі — измеренные отклонения профиля в дискретных точках; n — число измеренных дискретных отклонений на базовой длине.

2. **Высота неровностей профиля по десяти точкам Rz** - сумма средних абсолютных значений высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины.

$$R_{z} = \frac{\sum_{i=1}^{5} |y_{pi}| + \sum_{i=1}^{5} |y_{vi}|}{5}$$

где y_{pi} – высота i-го наибольшего выступа профиля; y_{vi} – глубина i-й наибольшей впадины профиля

- 3. **Наибольшая высота неровностей профиля Rmax** расстояние между линией выступов профиля и линией впадин профиля в пределах базовой длины
- 4. **Средний шаг неровностей профиля Sm** среднее значение шага неровностей профиля в пределах базовой длины
- 5. Средний шаг местных выступов S среднее значение шагов местных выступов профиля, находящихся в пределах базовой длины

6. **Относительная опорная длина профиля tp** — отношение опорной длины профиля к базовой длине:

$$t_p = \frac{1}{I} \sum_{i=1}^n b_i$$

 $\sum_{i=1}^{n} b_{i}$

где $\overline{i=1}$ — опорная длина профиля (сумма длин отрезков, отсекаемых на заданном уровне P в материале профиля линией, эквидистантной средней линии в пределах базовой длины).

Стандартом установлены два качественных параметра

- 1. Вид обработки. Указывается в том случае, когда шероховатость поверхности следует получить только определенным способом.
- 2. Тип направлений неровностей. Указывается только в ответственных случаях, когда это необходимо по условиям работы детали или сопряжения.

Схематичес Тип Тип Схематическ N⊆ N⊆ Обозначе Обознач KOE. направлений направлений ne. Π/Π Π/Π изображени ение ние изображение неровностей неровностей Параллельное Произвольное Перпендикулярн Кругообразное oe. Перекрещиваю 3 Радиальное щееся

Нормирование параметров шероховатости поверхности Способы назначения шероховатости поверхности:

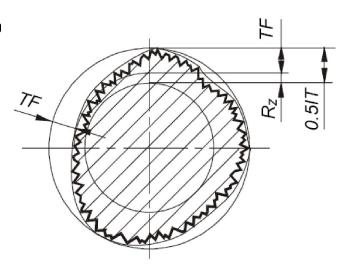
1. Имеются рекомендации по выбору числовых значений для наиболее характерных видов сопряжений, часть которых приведена в таблице:

Характеристика поверхности	Значение параметра R_{a_j} мкм	
Посадочные поверхности подшипников скольжения	0.40.8	
Поверхности деталей в посадках с натягом	0.81.6	
Поверхности валов под уплотнения	0.20.4, полировать	

2. Шероховатость устанавливается стандартами на детали и изделия, а также на поверхности, с которыми они сопрягаются, например, требования к шероховатости поверхностей под подшипники качения

Посадочная поверхность	Номинальный размер, мм	Значение параметра <i>R_a</i> , мкм, не более Класс точности подшипника		
		Валов	До 80	1.25
Свыше 80 до 500	2.5		1.25	0.63
Отверстий корпусов	До 80	1.25	0.63	0.63
	Свыше 80 до 500	2.5	1.25	1.25
Опорных торцов заплечиков валов и корпусов	До 80	2.5	1.25	1.25
	Свыше 80 до 500	2.5	2.5	2.5

3. Шероховатость связывают с допуском размера (IT), формы (TF) или расположения (TP).


Большинство геометрических отклонений детали должно находиться в пределах поля допуска размера

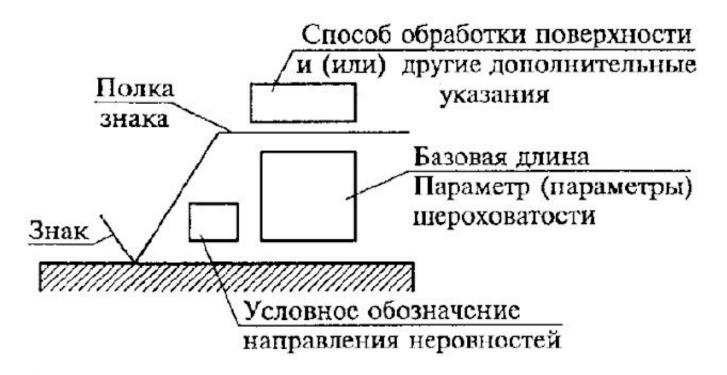
Величину параметра **Rz** рекомендуется назначать не более **0.33** от величины поля допуска на размер либо **0.5...0.4** от допуска расположения или формы.

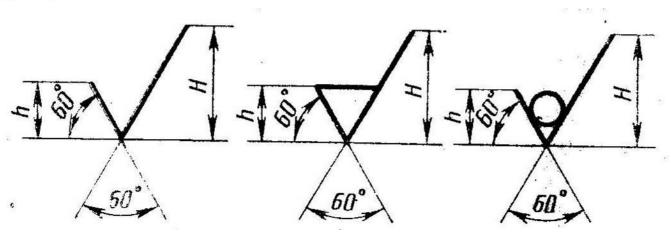
Если элемент детали имеет все три допуска, то следует брать допуск с наименьшей величиной.

Переход от параметра Rz к параметру Ra производится по соотношениям :

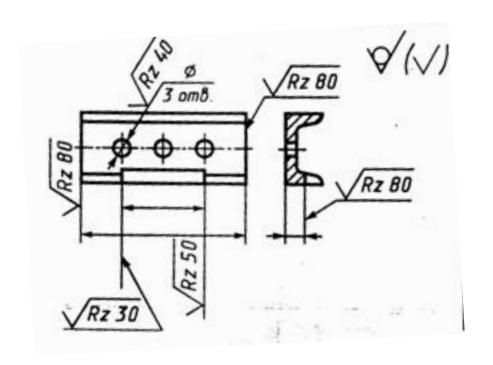
 $Ra \approx 0.25 \cdot Rz$ при $Rz \geq 8$ мкм; $Ra \approx 0.2 \cdot Rz$ при Rz < 8 мкм.

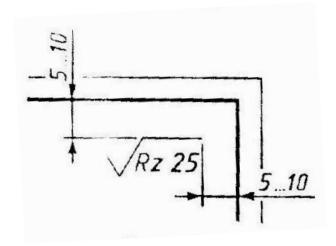
Обозначение параметров шероховатости на чертежах


 $\sqrt{}$ — способ обработки для получения шероховатости конструктор не устанавливает;


— шероховатость поверхности должна быть получена удалением слоя материала (точением, фрезерованием, шлифованием, травлением и т.п.);

— шероховатость поверхности должна быть получена без снятия слоя материала (ковкой, штамповкой, литьем и т.п.).


Значения всех параметров шероховатости указывают после соответствующего символа, причем высотные параметры Ra, Rz, Rmax проставляются в микрометрах, шаговые параметры Sm, S- в миллиметрах, параметр формы t_p- в процентах.

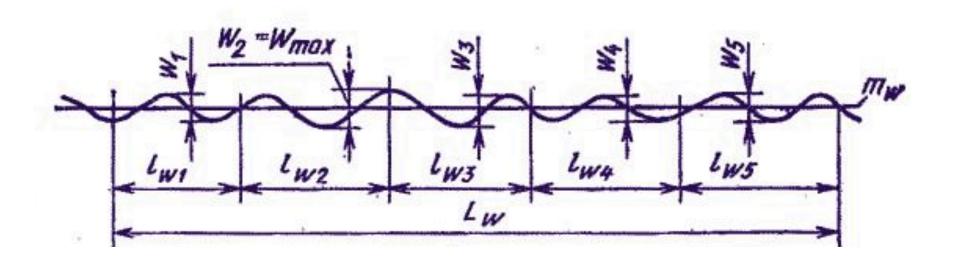

Структура обозначения шероховатости на чертежах

Расположение знаков шероховатости на чертежах

Волнистость

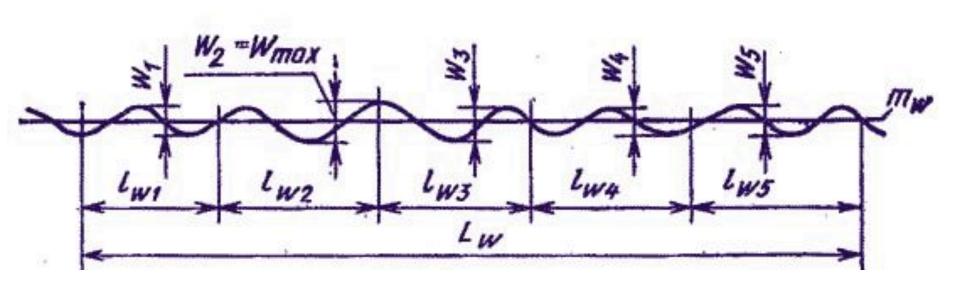
- совокупность периодически повторяющихся неровностей, у которых расстояния между смежными возвышенностями или впадинами превышают базовую длину l.

(Sw/Wz) < 40 шероховатость поверхности,


(Sw/Wz) > 1000 — отклонение формы.

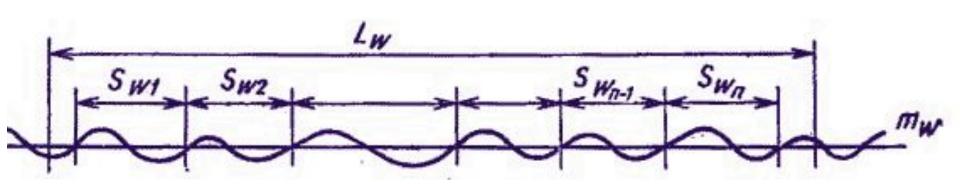
где Sw шаг, Wz высота неровностей

Параметры волнистости


Высота волнистости Wz — среднее арифметическое из пяти ее значений (W1, W2, ..., W5), определенных на длине участка измерения Lw, равной не менее пяти действительным наибольшим шагам Sw волнистости

Wz = (W1 + W2 + W3 + W4 + W5)/5.

Параметры волнистости


Наибольшая высота волнистости Wmax — расстояние между наивысшей и наинизшей точками измеренного профиля в пределах длины Lw, измеренное на одной полной волне.

Параметры волнистости

Средний шаг волнистости Sw — среднее арифметическое значение длин отрезков средней линии Swi, ограниченных точками их пересечения с соседними участками профиля волнистости

$$S_W = \frac{1}{n} \sum_{i=1}^n S_{Wi}.$$

