Воздействие шума и вибрации

Виброакустические колебания

Виброакустические колебания — это упругие колебания твердых тел, газов и жидкостей, возникающие в рабочей зоне при работе технологического оборудования, движении технологических транспортных средств, выполнении технологических операций.

Акустические колебания

- Колебания упругой среды.
- Слышимые и неслышимые колебания воздушной среды.
- Акустические колебания и диапазоне частот 16 Гц...20 кГц, воспринимаемые ухом человека с нормальным слухом, называют звуковыми.
- Акустические колебания с частотой менее 16 Гц называют инфразвуковыми, выше 20 кГц ультразвуковыми

Источники шума на производстве:

- транспорт,
- технологическое оборудование,
- системы вентиляции,
- пневмо- и гидроагрегаты,
- источники, вызывающие вибрацию, так как колебания твердых тел вызывают колебания воздушной среды.

Шум - сочетание звуков различной частоты и интенсивности

Физические характеристики звука:

Частота колебаний f (Гц), - число колебаний **ЗВУКОВОЙ** волны в секунду;

По частоте колебаний звуки классифицируются

Инфразвук

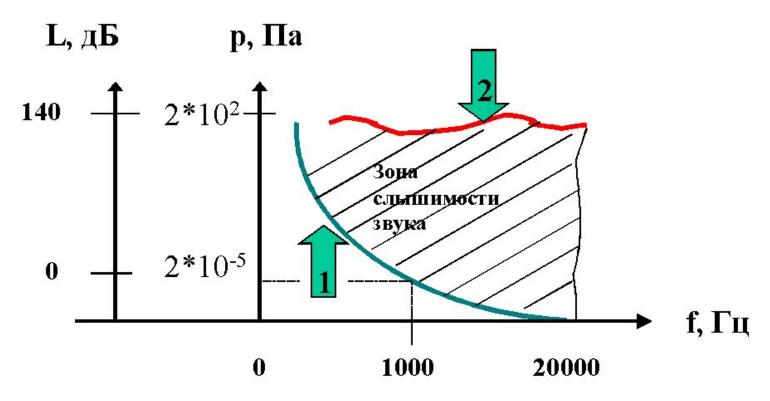
20Гц

Слышимый **ЗВУК**

20000Гц Ультразвук

Физические характеристики звука

- Интенсивность или сила звука I (вт/м²) равна потоку звуковой энергии, проходящей в единицу времени через 1м² площади, перпендикулярно распространению звуковой волны
 - Интенсивность пропорциональна квадрату звукового давления.
- Звуковое давление Р (Па) это разность между мгновенным давлением в волне и атмосферным давлением;


Уровень ощущения звука, L

$$L = 10 \lg \frac{I}{I_0} = 10 \lg \frac{p^2}{p^2_0} = 20 \lg \frac{p}{p_0}$$

$$I_0 = 10^{-12} \text{ вт/м}^2,$$
 $p_0 = 2 \times 10^{-5} \text{ Па}$

интенсивность и звуковое давление на пороге СЛЫШИМОСТИ.

Зона слышимости звука

Порог слышимости (1) зависит от частоты, а порог болевого ощущения (2) имеет слабую частотную зависимость. Уровень звука на пороге слышимости равен 0дБ при звуковом давлении 2*10⁻⁵ Па, а на пороге болевого ощущения 140дБ при звуковом давлении 2*10² Па. Область, расположенная между порогами, называется зоной слышимости звука.

Суммирование уровней шума

Уровни шума являются логарифмическими величинами и их нельзя непосредственно складывать. Для этого применяют правило суммирования уровней:

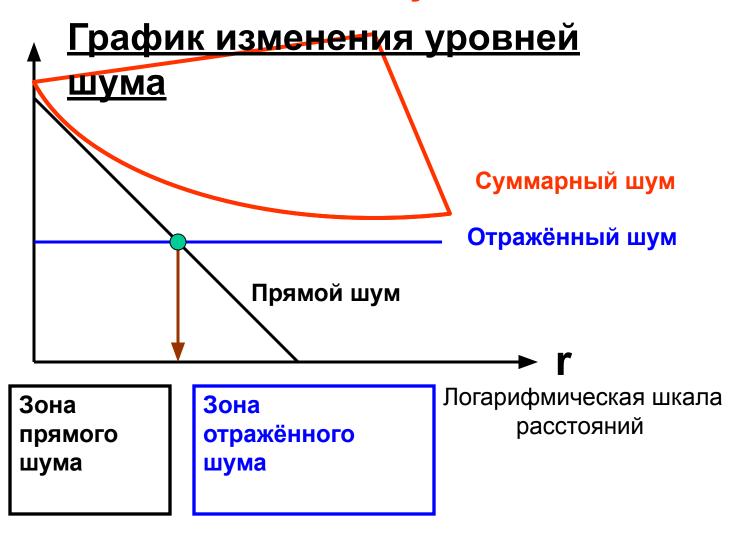
$$L_{cym.} = L_{\sigma} + \delta L$$

L - больший из суммируемых уровней
 бL - добавка к большему уровню, определяемая по таблице в зависимости от разности уровней.

Если один из суммируемых уровней меньше другого на 10 дБ, то он не учитывается.

L_1-L_2	0	1	2	3	4	5	6	7	8	12
δL, дБ	3	2,7	2,2	1,8	1,4	1,2	0,9	0,8	0,7	0,3

Для **n** одинаковых уровней L₁


$$L_{cym.} = L_1 + 10 \lg n$$

Окружающие человека шумы имеют разную интенсивность:

разговорная речь — 50...б0дБА, автосирена — 100 дБА, шум двигателя легкового автомобиля — 80 дБА, громкая музыка —70 дБА, шум от движения трамвая —70...80 дБА, шум в обычной квартире —30...40 дБА.

Распространение шума в помещении с источником шума

Изменение уровней шума

Шум и его характеристики

Уровень звукового давления измеряют в октавных полосах частот. Октава характеризуется среднегеометрической частотой, в октаве соотношение нижней и верхней границ частот равна 1/2.

Граничные частоты октавных полос

Воздействие шума на человека в производственных условиях

Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, исключительно сильное влияние оказывает шум на быстроту реакций, сбор информации и аналитические процессы, из-за шума снижается производительность труда и ухудшается качество работы.

Индивидуальная реакция организма

Степень шумовой патологии зависит от

- □интенсивности и продолжительности воздействия,
- □функционального состояния ЦНС
- □индивидуальной чувствительности организма

Индивидуальная чувствительность к шуму

составляет *4...17 %.*

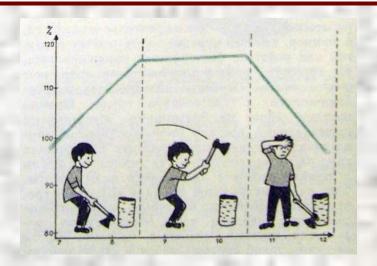
Повышенная чувствительность к шуму определяется сенсибилизированной вегетативной реактивностью, присущей 11 % населения. Женский и детский организм особенно чувствительны к шуму.

Высокий уровень шума отрицательно влияет на ЦНС, желудок, двигательные функции, умственную работу, зрительный анализатор.

Изменяется частота и наполнение пульса, кровяное давление, замедляются реакции, ослабляется внимание, ухудшается разборчивость речи, меняется цветоощущение.

При воздействии шума было установлено изменение белкового обмена, характера сахарных кривых, содержания холестерина и хлоридов крови.

Под влиянием шума изменяется **объем селезенки и почек, изменяются функции желез внутренней секреции**


четырехчасовое воздействие шума интенсивностью 110 дБ вызывает гиперфункцию щитовидной железы.

В условиях шума повышается газообмен, изменяются частота и глубина дыхания, увеличивается вентиляция легких, повышается расход энергии на 20–25 %.

Влияние шума на умственную работоспособность

Действие шума интенсивностью 70 дБ вызывает у подростков (до 19 лет) повышенную реактивность и *утомляемость*, которые проявлялись в затруднении мышления, понижении скорости и точности работы.

Длительное воздействие шума

 Снижается чувствительность органа слуха, что приводит к временному повышению порога слышимости.

- При длительном воздействии шума высокого уровня возникают необратимые потери слуха и развивается профессиональное заболевание
 - тугоухость.

Инфразвук — колебание звуковой волны < 20 Гц

- Особенности: малое поглощение его энергии в среде, поэтому он распространяется на значительные расстояния.
- Источники инфразвука: оборудование, которое работает с частотой циклов менее 20 в секунду (вентиляторы, поршневые компрессоры, машины и т.д.)

Опасность для здоровья человека

Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6 - 8 Гц), из-за резонанса могут возникнуть тяжелые последствия.

Опасность для здоровья человека

Вредное воздействие инфразвука: действует на ЦНС (страх, тревога, покачивание, т.д.).

Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечного ритма. Возможна потеря слуха и зрения.

Инфразвук с уровнем от 110 дБ до 150дБ вызывает неприятные субъективные ощущения и различные функциональные изменения в организме человека: нарушения в ЦНС, сердечно-сосудистой и дыхательной системах, вестибулярном аппарате.

Ультразвук

Колебания звуковой волны в диапазоне частот выше 20 кГц, обычно не воспринимаемые человеческим ухом.

Используется в оптике (ультразвуковые мойки, для очистки и для обезжиривания деталей, сварке, сушки и т.д.)

Ультразвук

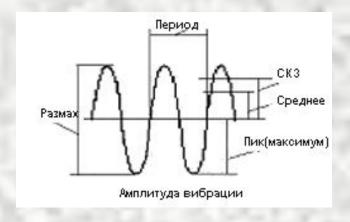
- □ Низкочастотные (от 1,12*10⁴-10⁵) ультразвуковые колебания распространяются воздушным и контактным путем.
- □ **Высокочастотные** (от 10⁵-10⁹ Гц) распространяются только! контактным путем.

Контактное воздействие ультразвука чаще всего бывает на руки в момент загрузки и выгрузки деталей из ультразвуковых ванн.

Вредное воздействие ультразвука

Воздействие через воздушную среду

проявляется в воздействии на сердечнососудистую систему; нервную систему; эндокринную систему; нарушение терморегуляции и обмена веществ.


Вредное воздействие ультразвука

Контактное воздействие на руки (высокочастотные колебания)

приводит к нарушению *капиллярного кровообращения* в кистях рук, снижению *болевой чувствительности*, изменению костной структуры — снижению *плотности костной* ткани.

Вибрация Физические характеристики вибрации

Вибрация - это механические колебания в твёрдых телах.

Вибрацию оценивают частотой **f** (Гц) или периодом колебаний **T**

Амплитудой вибросмещения

Амплитудой виброскорости

Амплитудой виброускорения

Степень ощущения вибрации оценивают по закону Вебера-Фехнера относительной логарифмической величиной - уровнем виброскорости L v в децибелах (дБ).

$$L_{v} = 20 \lg \frac{V}{V_{0}},$$

где V - действующее среднеквадратичное значение виброскорости, м/с

 V_0 - пороговая виброскорость, равная 5×10^{-8} м/с.

Виды вибрации

по способу передачи на человека:

Общая вибрация действует на тело сидящего или стоящего человека и оценивается в октавных полосах со среднегеометрическими частотами f = 2, 4, 8, 16, 31,5; 63 Гц.

Локальная - передаётся через руки на частотах

f = 8, 16, 31,5; 63, 125, 250, 500, 1000 Гц.

Виды вибрации

По временной характеристике различают:

- Постоянную вибрацию контролирующий параметр (виброскорость) за время наблюдения изменяется не более, чем в 2 раза.
- Непостоянную вибрацию изменяется более, чем в 2 раза.

Вибрации могут быть:

- преднамеренными это когда вибрация используется в технологическом процессе;
- непреднамеренными например, транспортная вибрация

Классификация вибрации

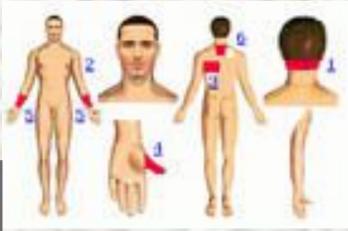
Вибрация

вредный фактор, обладающий высокой биологической активностью.

Действие вибрации на человека зависит от частоты и уровня вибрации, родолжительности воздействия, места приложения вибрации, направления оси вибрационного воздействия, индивидуальных способностей организма человека воспринимать вибрацию,

условий возникновения резонанса и т.д.

Сочетанное действие вибрации


- Воздействие вибрации на организм усугубляется сочетанием ее с другими факторами окружающей среды.
- К ним относятся: шум высокой интенсивности, неблагоприятные метеорологические условия, значительная запыленность воздуха, повышенное и пониженное атмосферное давление.
- Работа с вибрирующим оборудованием часто требует больших физических усилий.

Воздействие вибрации на человека

Вибрация отрицательно воздействует на ЦНС, возникают головные боли, головокружение, нарушение сердечной деятельности, расстройство вестибулярного аппарата.

Воздействие вибрации на человека

Общая вибрация. Болезненные ощущения вызываются резонансом вибрации с внутренними органами, появляются боли в пояснице.

Локальная вибрация - спазм сосудов, онемение пальцев и кистей рук.

При длительном воздействии вибрации возможно развитие вибрационной болезни, тяжёлая стадия которой неизлечима.

Стадии вибрационной болезни

- 1-я стадия малосимптомная, жалобы на резкие боли и парестезии в руках с расстройствами чувствительности на кончиках пальцев, склонность к спастическому состоянию артериол;
- 2-я стадия умеренно выраженая, стойкие парестезии, снижение температуры и чувствительности кожи, сужение капилляров, отклонения в функции центральной нервной системы, явления обратимы

Стадии вибрационной болезни

3-я стадия – выраженные *трофические нарушения*, расстройство *чувствительности*, заметные сдвиги в функциональном состоянии ЦНС, изменения стойкие и медленно поддаются лечению;

4-я стадия – генерализованная, симптомы резко выражены, сосудистые нарушения на руках и ногах, состояние стойкое, малообратимое.

Ангиодистонический синдром

Наблюдается во всех стадиях вибрационной болезни. Характеризуется вегетативно-сосудистыми нарушениями в конечностях: похолоданием, цианозом, парестезиями, нарушением капиллярного кровообращения.

Ангиоспастический синдром

Характерно наличие сужения капиллярного русла, приступа спазма по типу «белых» пальцев со значительным снижением кожной температуры, выраженным нарушением чувствительности по сегментарному типу

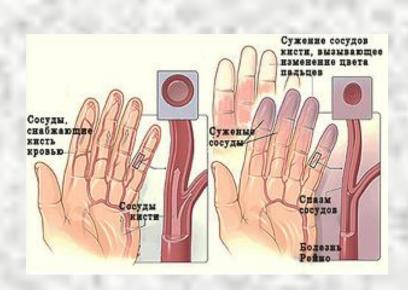
Синдром вегетативного полиневрита

Отмечаются парестезии, боли в конечностях, нарушение чувствительности по периферическому типу, снижение кожной температуры, повышенная потливость ладоней, ломкость ногтей и др.

Синдром вегетомиофасцита

наличие дистрофических изменений в мышцах и тканях опорно-двигательного аппарата, болезненностью мышц, нарушением чувствительности, болезненными симптомами, нередко сочетающимися с сосудистыми нарушениями.

Синдром неврита


нарушение двигательных функций, парезы (например, парезы локтевого нерва у алмазчиков, шлифующих стекло на шлифовальных машинках и травмирующих локтевой нерв вследствие длительного упора локтем на твердую поверхность стола).

Гипоталамический синдром с нейроциркуляторными нарушениями

наличие вегетативно-сосудистых и других пароксизмов, распространяющихся как на периферические отделы, так и на коронарные и церебральные сосуды.

Вестибулярный синдром

Характеризуется появлением приступов головокружений, повышением возбудимости вестибулярного аппарата.

Профилактика

- технические мероприятия уменьшение вибрации в источнике их образования, применение различных амортизаторов вибрации;
- обеспечение нормальных микроклиматических условий в помещениях, в которых производится работа с вибрационными инструментами и оборудованием;
- гигиеническое нормирование уровней вибрации;
- организация режима труда при минимальном контакте работающих с вибрирующим оборудованием.

Профилактика виброболезни

- Рекомендуется проведение гидропроцедур ванн для рук с температурой воды 37°С в сочетании с самомассажем;
- УФ-облучение в субэритемных дозах преимущественно шейной области;
- Гимнастика;
- регулярные медосмотры (для выявления на ранней стадии профессионального заболевания).