#### Sir Isaac Newton

#### Life and Accomplishments

Group 4 Octavio Aguilera Juan Aldana Alex Serna



## **Table of Contents**

- I. The Beginning of His Life
- II. Early Life
- III. Reflecting Telescope
- IV. Calculus
- v. Motion and Gravity
- VI. First Law of Motion
- VII. Second Law of Motion
- viii. Third Law of Motion
- IX. Force
- x. Comets
- XI. Principia and Opticks
- xII. A Great Man
- xIII. References

# The beginning of his life

- Born on January 4, 1643
- In Woolsthorpe, Lincolnshire, England
- Where he was raised by his Grandmother



Woolsthorpe Manor: house where Newton grew up

# Early life



- Newton received a bachelor's degree at Trinity College, Cambridge in 1665
- The next two years Newton returned home where he came up with most of his discoveries.
- He returned to Trinity College in 1667, where he became a professor of mathematics in 1669.

# **Reflecting Telescope**



- In 1668 Newton made the first reflecting telescope
- Light is collected and refracted from a curved mirror
- Far superior from refracting telescopes because the image did not become blurry

### Calculus

- Newton invented Calculus in 1669, but didn't publish his work until 1704
- Calculus is divided into two parts Differential and Integral Calculus
- Differential Calculus: Deals with the change in rate of objects
- Integral Calculus: Deals with measuring quantities and dividing into smaller ones

### Motion and Gravity

- Newton wondered why objects fell to earth while sitting under an apple tree he saw an apple fall in front of him
- Although many believe this story is untrue
- That is when Newton came up with the three laws of motion

#### First Law of Motion

#### A body continues in a state of rest in a straight line if it is not acted upon by forces.



### Second Law of Motion

 When a force acts on a body it produces an acceleration, which is proportional to the magnitude of the force



### Third Law of Motion

 If body A exerts a force on body B, body B always exerts an equal and opposite force on body A



#### Force

- Newton believed that when an object goes around another there are two balanced forces.
  - Centripetal force: pulls the revolving object towards the pivoting point
  - Centrifugal force: pulls the object away from pivoting point

### Comets

- Newton showed that comets acted upon by the same forces as the planets
- Proved when Edmund Halley predicted the next time a comet would pass by again



# Principia and Opticks most popular works

- Newton summarized his discoveries in Philosophiae naturalis principia mathematica (mathematical principles of natural philosophy) (1687)
- It shows his principle of universal gravitation and provided an explanation both of falling bodies on the Earth and of the motions of planets, comets and other bodies of the universe.
- Opticks (1704) presented his discoveries of light and elaborated his theory that light is composed of corpuscles, or particles.

#### A Great Man



#### Isaac Newton died on March 31, 1727 in London, England

### References

#### 1. Book

*Isaac Newton (The Last Sorcerer)*, by Michael White

#### 2. Encyclopedia Article

The New Encyclopedia Britannica Volume 8.
Micropaedia/Ready Reference pg. 663

#### 3. A source of scientific period

- *I. The Scientists of The Scientific Revolution* pg. 69-87
- 4. Internet source
  - Newton, Isaac. The Columbia Encyclopedia, Sixth Edition. 2001 @ www. Bartleby.com