Биопрепараты Серологические реакции

Учебное пособие для студентов Автор: доцент О.А.Заворохина

Биологические препараты - препараты, полученные <u>из живых</u> организмов или с помощью <u>живых</u>.

<u>Антигенные</u> (из антигенов):

Диагностикумы (для серологических реакций)

Вакцины (для профилактики инфекционных заболеваний) <u>Антительные</u> (содержат антитела):

Диагностичесие <u>сыворотки</u> (для серологических реакций)

Лечебные <u>сыворотки</u> (для лечения и профилактики людей)

Биологические препараты -

- это препараты изготовленные живых или на живых организмах.
- По назначению делятся на:
- Лечебные
- Профилактические
- Диагностические

M3

Лечебные и профилактические

- Эти биопрепараты используют для профилактики или лечения инфекционных болезней:
- Лечебные сыворотки чаще с терапевтическими целями
- Вакцины чаще с профилактической целью
- Интерфероны
- Аллергены
- Антибиотики
- Пробиотики

Сыворотки

- Содержат готовые антитела.
- Создают пассивный иммунитет:

противомикробный противотоксический

Лечебные сыворотки

получают путем иммунизации животных возбудителями болезней человека или анатоксинами, затем очищают сыворотку этого животного от посторонних белков, стандартизируют и используют по медицинским показаниям.

 Примеры: противостолбнячная, противодифтерийная сыворотка, антиботулиническая.

Использование лечебно-профилактических препаратов

- Интерфероны применяют для лечения или предупреждения вирусных заболеваний
- Аллергены для лечения аллергии (введение в малых дозах для связывания антител)
- Антибиотики для лечения инфекционных заболеваний
- Пробиотики для лечения дисбактериозов

Вакцины

- Препараты из микробов, их токсинов или отдельных антигенов
- Применяют для создания активного противомикробного или противотоксического иммунитета

Значение вакцинации

- Благодаря вакцинации в 1977 была ликвидирована оспа.
- Полиомиелит теперь встречается редко и только в отдельных регионах мира.
- По данным ВОЗ и ЮНИСЕФ, прививки против кори в 1999—2004 годах спасли 1,4 миллиона жизней.
- Дифтерия почти исчезла в начале 60-х годов прошлого века.

Получение вакцин

Вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных разными путями

Классификация вакцин

- Живые
- Неживые
- Анатоксины

Живые вакцины (из живых объектов)

1. ослабленные или аттенуированные

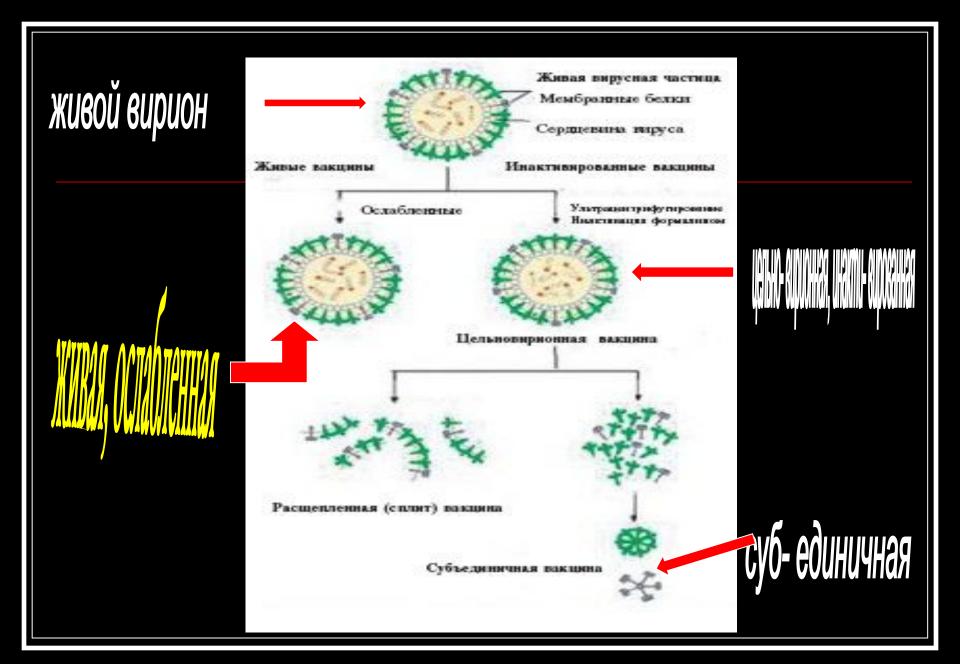
бактериальные: вирусные: чумная, БЦЖ, коревая, гриппозная бруцеллезная

2. дивергентные

(штаммы, родственные человеческим возбудителям — вирус коровьей оспы)

3. Векторные рекомбинантные

(вирус осповакцины с геном вируса гепатита В)


Неживые вакцины (инактивированные)

Молекулярные

- анатоксины
 из бактериальных
 токсинов):
 дифтерийный,
 столбнячный
- антигенные (полученные разными способами)

Корпускулярные

- Цельноклеточные (бактериальные, цельновирионные).
- Субклеточные или субвирионные

Диагностические биопрепараты

Разновидности:

- Диагностические сыворотки
- Диагностикумы

для серологических реакций

• Аллергены для диагностики аллергии

Диагностикумы -

это препараты из чистой культуры известных убитых микробов или любых других известных антигенов, например микробных токсинов.

Используют для определения неизвестных антител в сыворотке крови в серологических реакциях.

Диагностические сыворотки

получают путем иммунизации животных (неоднократное введение известных антигенов: бактерий, вирусов, токсинов).

Так как иммунизируем *известным* антигеном, то в полученной сыворотке содержатся *известные* антитела.

Используют для определения неизвестного антигена в серологических реакциях.

Серологические реакции -

это реакции с участием иммунных сывороток (**Serum** - сыворотка)

Иммунные сыворотки – содержащие достаточное количество антител.

Реакции используются для диагностики инфекционных болезней

Два направления – две цели постановки серологических реакций

Неизвестный

антиген (бактерии,

вирусы, токсины и т.д.)

+ диагностическая

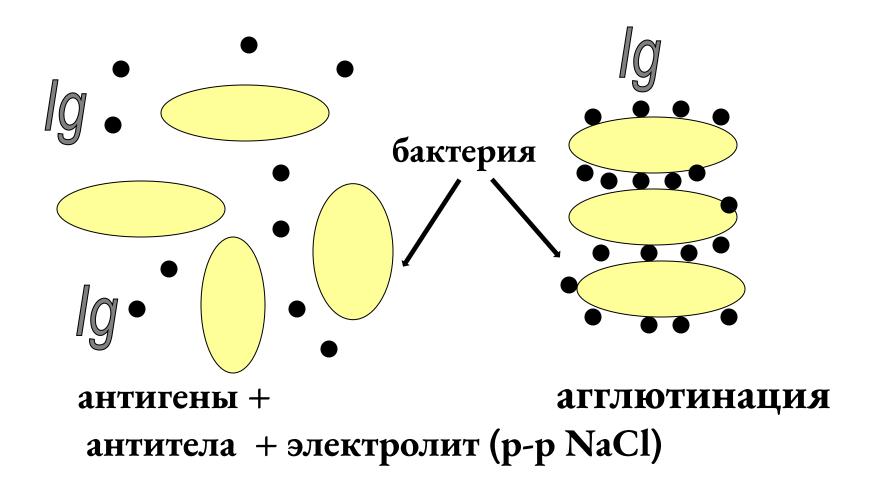
сыворотка

(известные антитела)

Неизвестные антитела

(Сыворотка больного)

+ **диагностикум** (известный антиген)


сероидентивикация

серодиагностика

Механизм реакции агглютинации

- Соединяется in vitro антиген и антитела (в растворе электролита NaCl).
- Антиген должен быть корпускулярным, например бактериальные клетки.
- Если антитела покрывают бактериальные клетки, то они теряют поверхностный заряд и склеиваются то есть происходит агглютинация

Реакция агглютинации

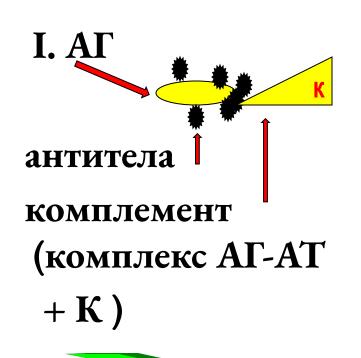
Компоненты для <u>р</u>еакции <u>связывания комплемента</u> - РСК

Основная система:

- Антиген (растворимый)
- Антитела (сыворотка)
- Комплемент (сыворотка морской свинки)

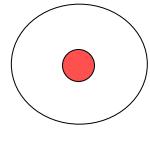
Гемолитическая система:

- Эритроциты барана
- Гемолитическая сыворотка (содержит антитела к эритроцитам барана)


Механизм реакции связывания комплемента - РСК

- 1 фаза: связывание антигена и антител
- 2 фаза: присоединение комплемента к этому комплексу

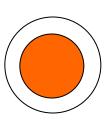
+ гемолитическая система


• Эритроциты не лизируются (нет комплемента)

Реакция связывания комплемента 1 вариант

эритроциты барана, антитела (гем.св.) (К нет)

Положительная реакция (эритроциты целые)



Реакция связывания комплемента - 2 вариант

реакция отрицательная

Использование серологических реакций

Реакция агглютинации постоянно используются в практике бактериологического метода для идентификации бактерий или для обнаружения антител у больного (серодиагностика).

РПГА – для серодиагностики (брюшной тиф, сыпной тиф, вирусные инфекции)

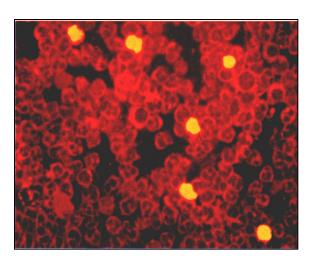
РСК – для диагностики вирусных инфекций, венерических болезней

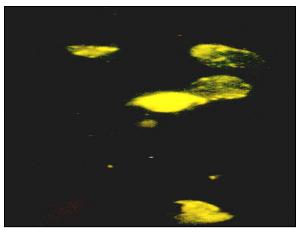
Реакция иммунофлюоресценции – РИФ

- В этой реакции участвуют «меченые» антитела, то есть *антитела*, соединенные с флюорохромами (вещества светящиеся в ультрафиолетовых лучах)
- Если антиген и антитела соответствуют друг другу и происходит их связывание то при наблюдении в люминесцентный микроскоп наблюдается свечение

Реакция иммунофлюоресценции

РИФ:


при положительной реакции

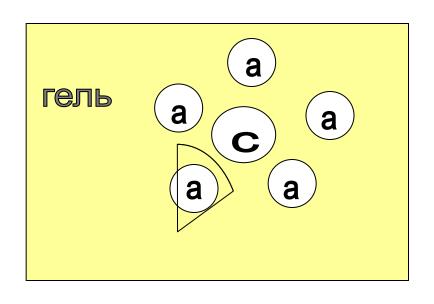

свечение (люминесцентный микроскоп)

Реакция иммунофлюоресценции

Идентификация вирусов:

клеточная культура, зараженная вирусами и обработанная люминесцентными сыворотками демонстрирует свечение в ультрафиолетовом свете (люминесцентный микроскоп)

Использование серологических реакций


РИФ – широко используется в вирусологии для <u>идентификации</u> вирусов, как в культурах клеток, так и непосредственно в клетках человека (срезы, соскобы со слизистой)

Кроме того для диагностики микоплазменной и хламидийной инфекций

Преципитация

- реакция осаждения.

Используется растворимый (молекулярный) антиген, который со специфическими антителами образует нерастворимые комплексы.

Преципитация в

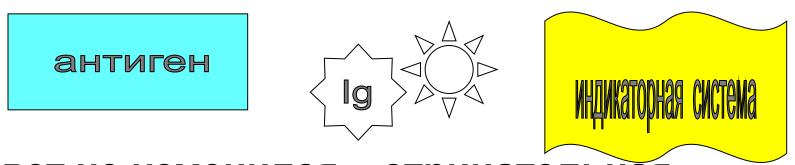
геле:

в лунках

антигены и

сыворотка.

Полоска - преципитат.


Иммуноферментный анализ (ИФА) - общая схема

антиген + антитела + антиглбулиновая сыворотка + индикаторная система изменение цвета положительная реакция отрицательная реакция —

Иммуноферментный анализ

Изменение цвета - положительная реакция

Цвет не изменился – отрицательная реакция

Использование серологических реакций

- Реакция преципитации используется в практической иммунологии для определения иммуноглобулинов человека, для обнаружения различных антигенов (с диагностической целью).
- *ИФА* один из самых современных методов для определения вирусов гепатита, антител к ним, для диагностики *ВИЧ* инфекции