Физиология спинного, заднего и среднего мозга

Функции спинного мозга

Проводниковая

- 1.Тонкий пучок Голля и клиновидный Бурдаха
- 2.Спиноталамические пути
- 3.Спиномозжечковые пути Флексига и Говерса

Рефлекторная

Вегетативные рефлексы

Соматические рефлексы

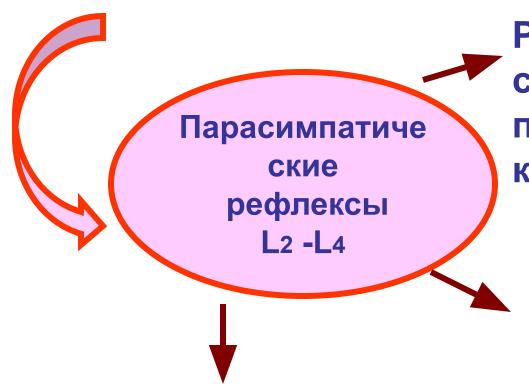
Соматические рефлексы спинного мозга

1.Рефлексы, регулирующие тонус мышц

- 2. Защитные рефлексы с рецепторов кожи (полисинаптические рефлекторные дуги
- 3. Врожденные двигательные программы:

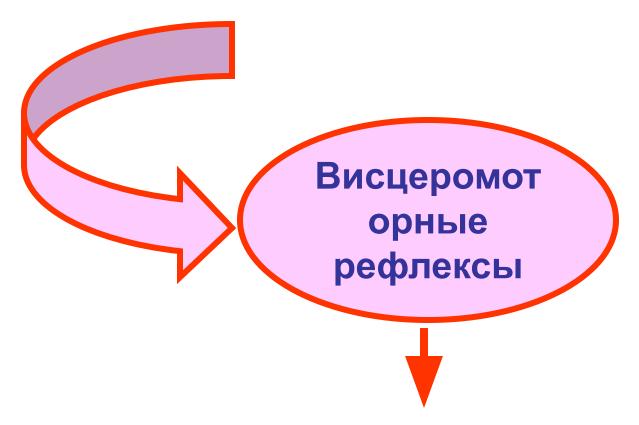
- а)перекрестный разгибательный рефлекс;
- б) шагательный рефлекс
- В основе лежат реципрокные отношения между центрами антагонистами

Роль спинного мозга в двигательных функциях



Рефлекторная деятельность вегетативных центров СМ

Секреторные и моторные внутренних органов



Рефлекторное сокращение мочевого пузыря и прямой кишки

Половые рефлексы: у мужчин – рефлекторная эрекция; у женщин – сосудистые реакции клитора и

влагалища

Расслабление внутреннего сфинктера мочевого пузыря и прямой кишки

Представляют собой интеграцию висцеральных и соматических рефлексов:

- висцеро-моторные
- моторно-висцеральные

Физиология заднего мозга

Анатомически входят: продолговатый мозг, мост онтогенетически — мозжечок

Функции заднего мозга

- Проводниковая
- Рефлекторная связана с деятельностью нервных центров:
- 1)ядер черепномозговых нервов(ЧМН)
- 2)Жизненно важных нервных центров

Рефлекторная деятельность заднего мозга

Простые рефлексы (секреторные, моторные)

С участием одного из черепномозговых нервов: XII, XI, X, IX, VIII, VII,VI,V

Сложнокоординиро ванные рефлексы

В них участвуют многие нервные центры.

Характеристика сложных рефлексов заднего мозга

Участвуют двигательные ядра чмн:

V - опускание нижней челюсти,

VII – сокращение мимической мускулатуры,

XII – движения языка.

VII и IX обеспечивают выделение слюны для герметизации контакта губ с соском.

V – движение нижней челюсти,

VII – сокращение мимической мускулатуры,

XII – движение языка для подачи пищи на зубы,

VII и IX - обеспечивают секрецию слюны

Участвуют: афферентные волокна V, IX п. ЧМН эфферентные волокна в составе V, IX, X, XI п. ЧМН

Работа различных групп мышц строго скоординирована

Антиперистальтика отделов ЖКТ при раздражении различных рецептивных полей

Деятельность жизненно важных НЦ

 Это те части «созвездий» центров, нарушение функционирования которых приводит к остановке дыхания и кровообращения

Жизненноважные центры

Имеется взаимодействие этих центров.

Дыхатель ный

Сосудодвигатель ный Проявляется в виде дыхательно-сердечной аритмии.

Механизм — повышение тонуса блуждающего нерва в конце выдоха и усиление его тормозного влияния на сердце

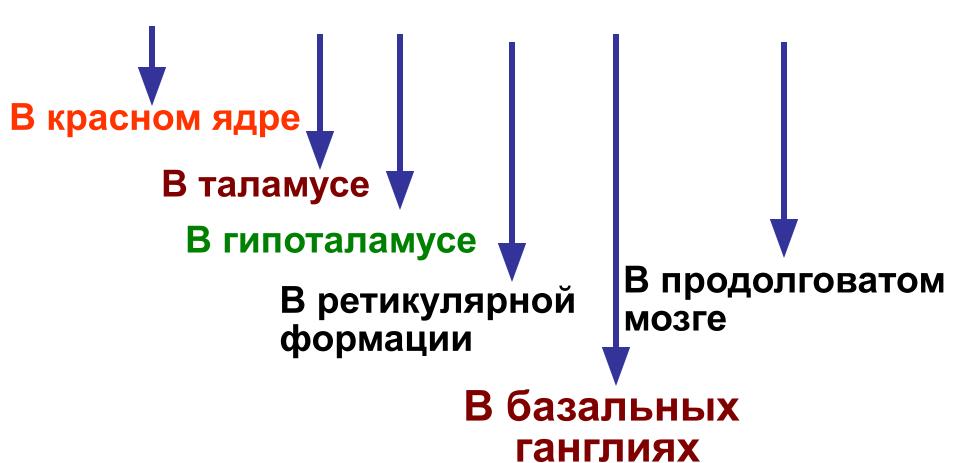
Мозжечок

• Интегративная структура мозга, принимающая участие в координации и регуляции произвольных и непроизвольных движений, вегетативных функций и поведения.

Отделы мозжечка

- Червь.
- По обе стороны от червя 2 полушария и боковые доли.
- Каждое полушарие делится на переднюю и заднюю доли.
- Отделы мозжечка покрыты корой

Ядра мозжечка


- •В черве 2 ядра шатра
- •В полушариях зубчатое ядро
- •В боковых долях шаровидное и пробковидное

Афферентные связи мозжечка

Эфферентные связи мозжечка

Проходят главным образом через верхние ножки и заканчиваются с перекрестом:

Функция мозжечка

- Дополняет и корректирует деятельность других двигательных структур.
- Мозжечок участвует:
- 1) в контроле за тоническими рефлексами (червь и ядра шатра);

•2) в контроле за осуществлением быстрых целенаправленных произвольных движений (полушария и зубчатое ядро);

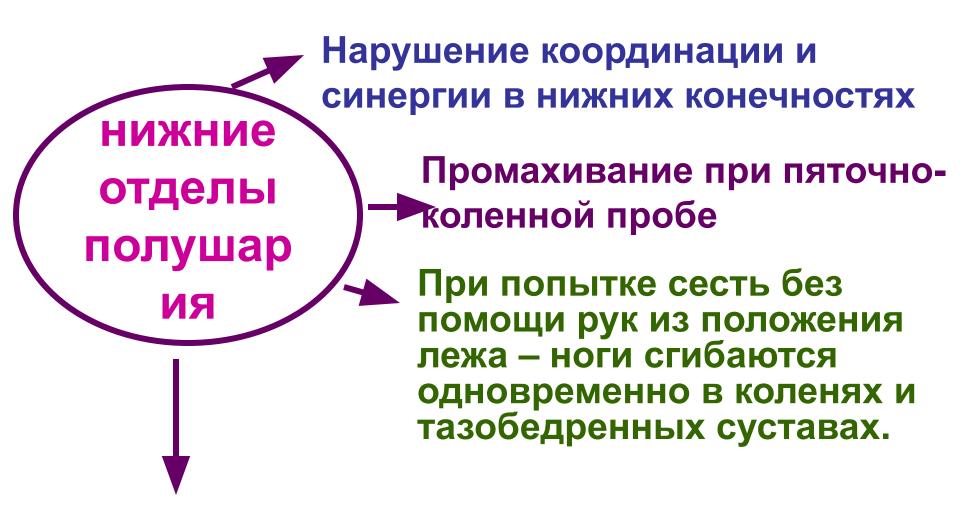
- 3) в коррекции движений по ходу выполнения.
- Обеспечивает координацию между тоническими рефлексами и целенаправленными движениями
- (промежуточная область, шаровидное и пробковидное ядра)

Эффекты нарушений мозжечка

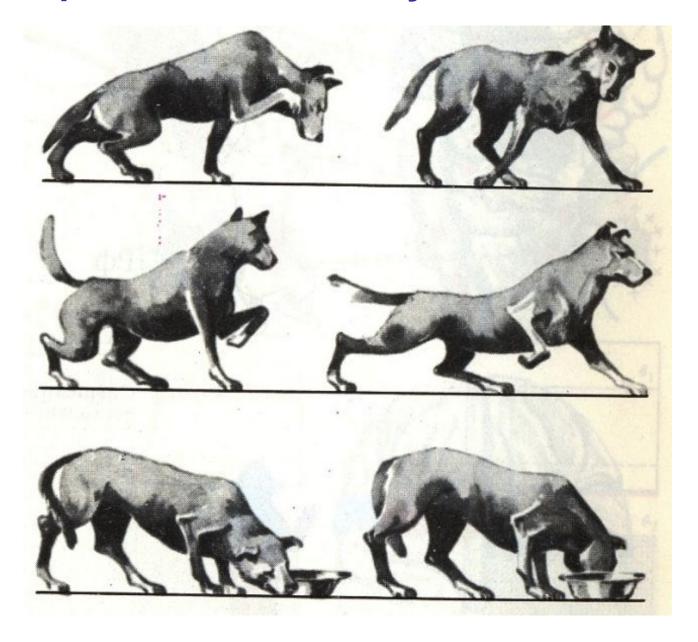
- Атония нарушение тонуса мышц
- Атаксия нарушении координации, плавности и стабильности движений.
- Астения легкая утомляемость.
- Асинергия нарушение соотношения активности центров разных мышц.

- Астазия нарушение слитности сокращений, тремор.
- Адиодохокинез нарушение чередования противоположных движений.
- Афазия нарушение речи.
- Дезэквилибрация нарушение равновесия
- Нистагм головы и глаз.

Симптомы поражения отделов мозжечка


Нарушение походки и статики

При грубых поражениях больной не может стоять, ходить. Теряет равновесие и падает при запрокидывании головы.



Лишние неловкие движения, адиодохокинез, гипотония

При выполнении пробы Ромберга больной падает

Характер движений после удаления мозжечка

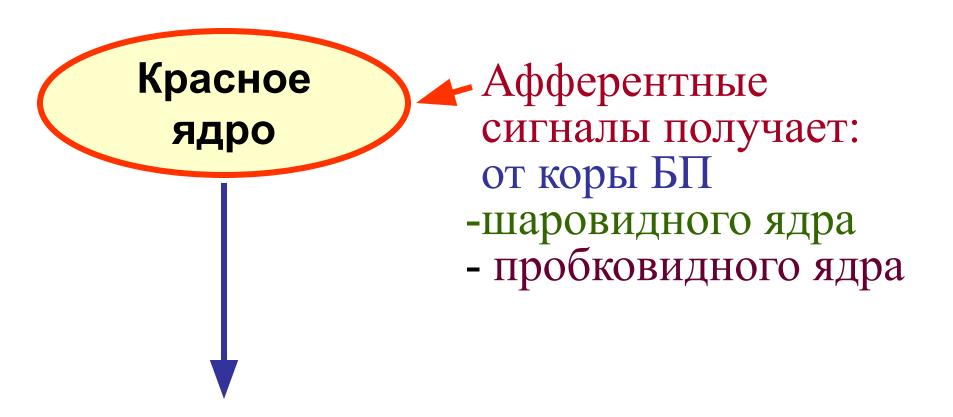
Физиология среднего мозга

Структуры среднего мозга

ножки мозга четверохол мие III и IV пары ЧМН красное ядро черная субстанция ядра ретикулярной формации

Физиология четверохолмия

Передн ие бугры Первичный зрительный центр.


Обеспечивает: ориентировочные зрительные рефлексы на световое раздражение (поворот головы, глаз к источнику света; наведение взора), аккомодацию хрусталика, сужение зрачка.

- Рефлексы передних бугров осуществляются
- •с участием III и IV пар ЧМН.
- Функцию нервов знать!

Задние бугры четверохолмия

Обеспечивают ориентировочные рефлексы на звуковые сигналы (поворот головы или туловища к источнику звука).

По руброспинальному пути активирует α-и γ - мотонейроны спинного мозга и регулирует тонус мышц сгибателей

Часть нейронов посылает сигнал в передний мозг и регулирует эмоциональное поведение

Тонические рефлексы ствола мозга

- Это рефлексы, обеспечивающие тонус мышц для поддержания равновесия в покое и при целенаправленном движении.
- Тонические рефлексы впервые исследовал Р. Магнус.

Двигательные ядра ствола, обеспечивающие тонические рефлексы:

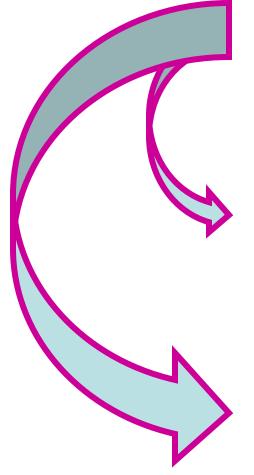
- красное ядро
- вестибулярное ядро Дейтерса
- ретикулярные ядра моста и продолговатого мозга

Функции ядер ствола мозга

тормозит

Связано руброспинальным путем с α и γ – МН сгибателей Повышает их тонус.
Мотонейроны разгибателей

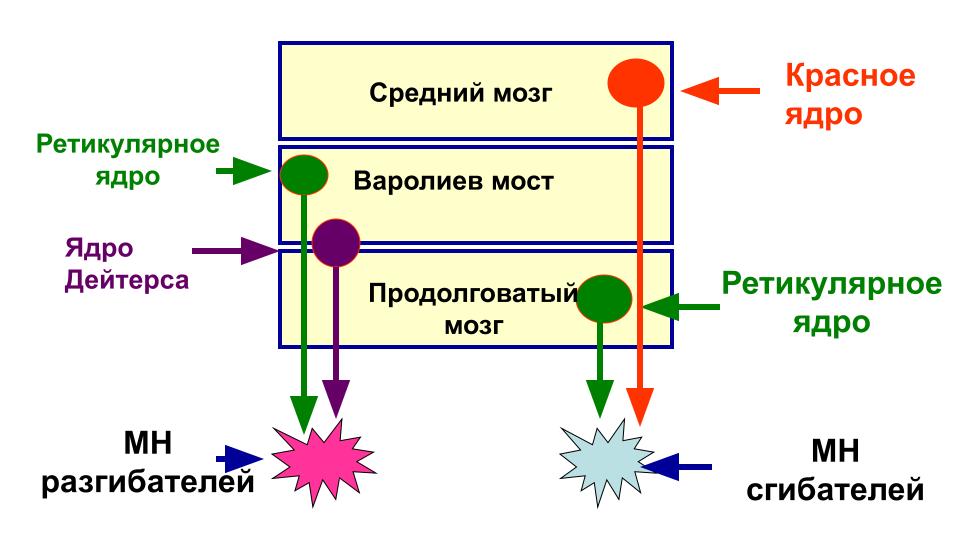
ядро Дейтерса Лежит на границе варолиева моста и продолговатого мозга. Вестибулоспинальный путь заканчивается на α и γ –МН разгибателей, возбуждая их и тормозя МН сгибателей.


Ретикулярн ое ядро моста Образует ретикулоспинальный тракт.

Заканчивается на α и γ –МН разгибателей, возбуждает их и тормозит мотонейроны сгибателей.

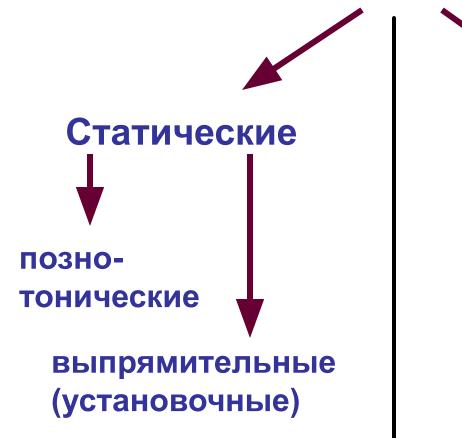
Ретикулярное ядро продолговатого мозга

Образует ретикулоспинальный тракт, заканчивающийся на α и γ – МН сгибателей, возбуждает их и тормозит МН разгибателей


Методы изучения функций ядер

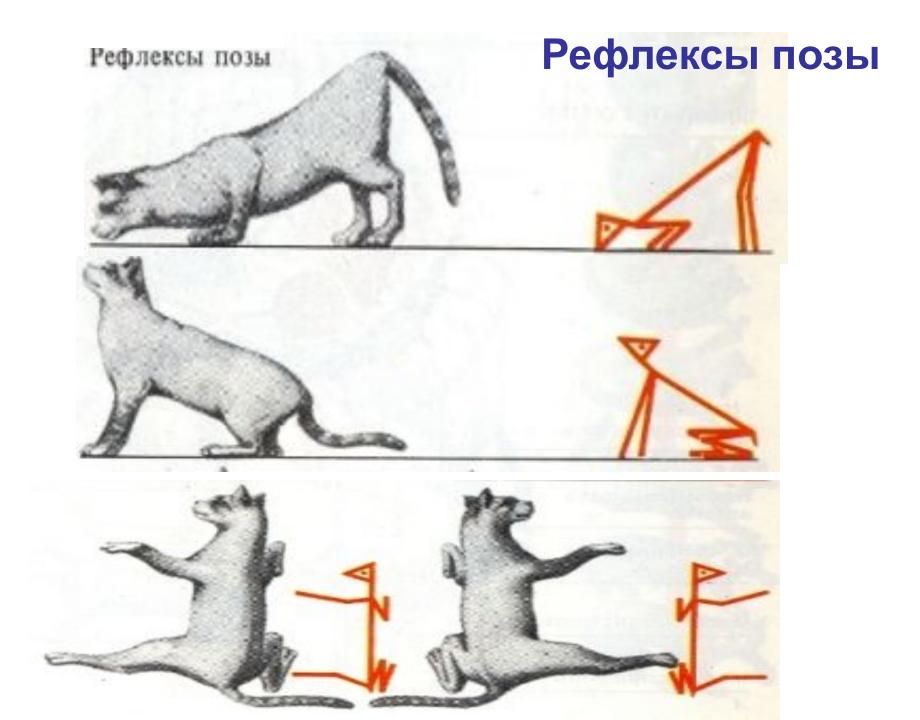
Путем перерезки мозга выше и ниже изучаемых ядер

Путем разрушения изучаемых ядер

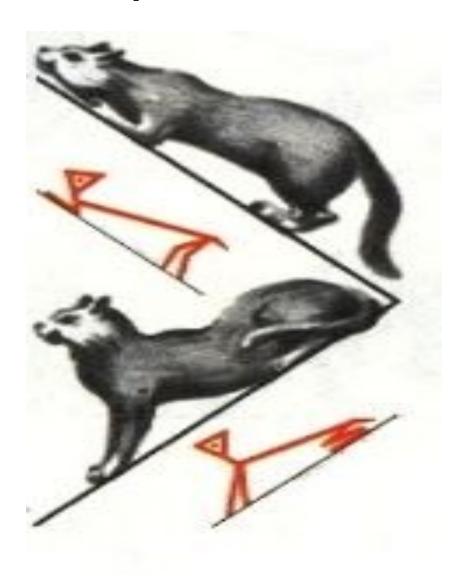

Схема связей ядер ствола мозга с мотонейронами

Децеребрационная ригидность

Классификация тонических рефлексов ствола мозга


Позно-тонические рефлексы

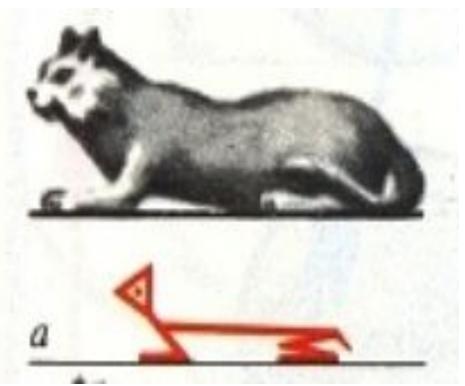
- Возникают с 2 х рефлексогенных зон:
- 1) с вестибулорецепторов преддверия (маточки и мешочка).
- Это скопление волосковых клеток.
- Волоски погружены в отолитову мембрану.
- При ее смещении под действием силы тяжести волоски деформируются и рецепторные клетки возбуждаются.


- Рецепторы возбуждаются при изменении положения головы на 0,5 градуса.
- С помощью медиатора возбуждение передается на окончание дендрита афферентного нейрона вестибулярного ганглия.
- При этом возникают познотонические рефлексы

Вторая рефлексогенная зона

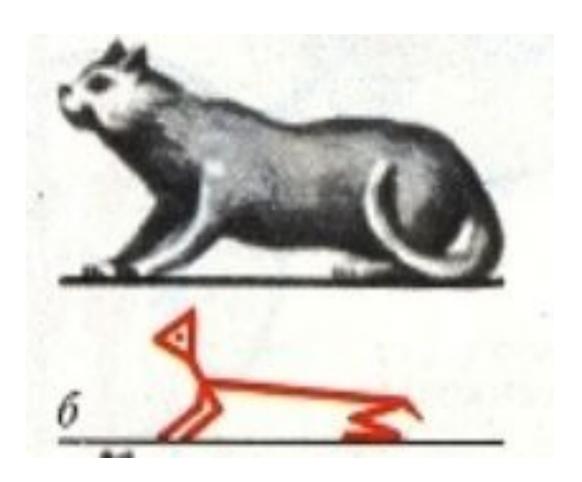
- – проприорецепторы шейных мышц (сухожильные Гольджи и мышечные веретена).
- Растяжение передней группы мышц вызывает повышение тонуса разгибателей передних конечностей и снижение задних и наоборот.

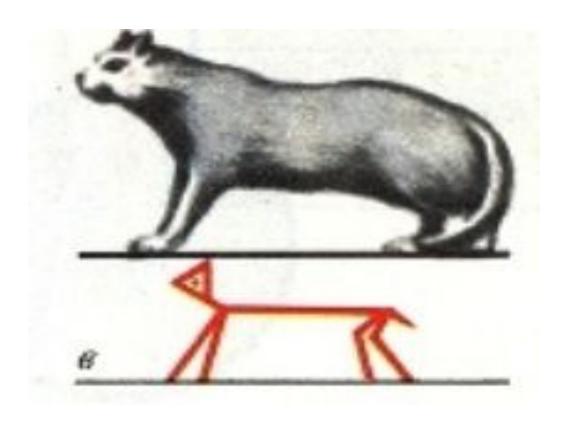
Рефлексы наклона



Установочные рефлексы

- Предназначаются для возвращения тела из неестественного положения в нормальное теменем кверху.
- При этом совершается цепь последовательных рефлексов.


1.Вестибулярный выпрямительный (с вестибулорецепторов преддверия). Приводит к выпрямлению головы, установке ее теменем кверху.

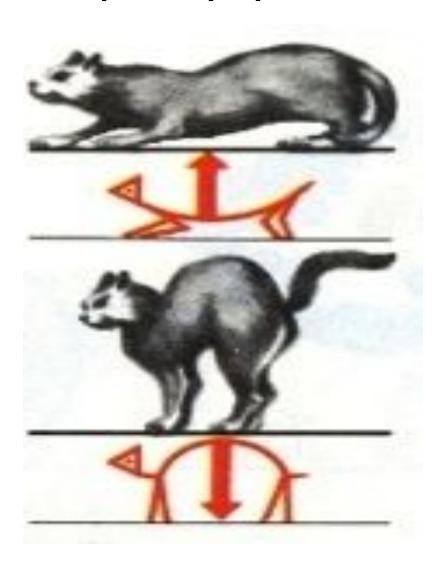

2. Шейный выпрямительный (с рецепторов растяжения шейных мышц).

Приводит к установки верхней части туловища на одну линию с головой.

3.Поясничный выпрямительный (с проприорецепторов мышц туловища).

Приводит к выпрямлению таза и нижних конечностей.

•В выпрямительных рефлексах участвуют и тактильные рецепторы кожи, раздражаемые весом тела.


Статокинетические рефлексы

Возникают при движении головы или всего тела с ускорением.

Возникают при движении с ускорением вверх или вниз. При движении вверх — повышается тонус сгибателей, вниз - разгибателей

Лифтные рефлексы



Возникают при вращении в любой плоскости. Рефлексогенная зона — вестибулорецепторы ампул Полукружных каналов.

Возникают с этих же рецепторов при прыжках, падении с высоты. Рефлекс обеспечивает мягкое приземление.

Рефлекс выпрямления **В**

