Взаимное расположение графиков линейной функции

7 класс

Разбейте функции, заданные формулами, на группы:

1.
$$y = 2x - 3$$
;

2.
$$y = x^2 - 3$$
;

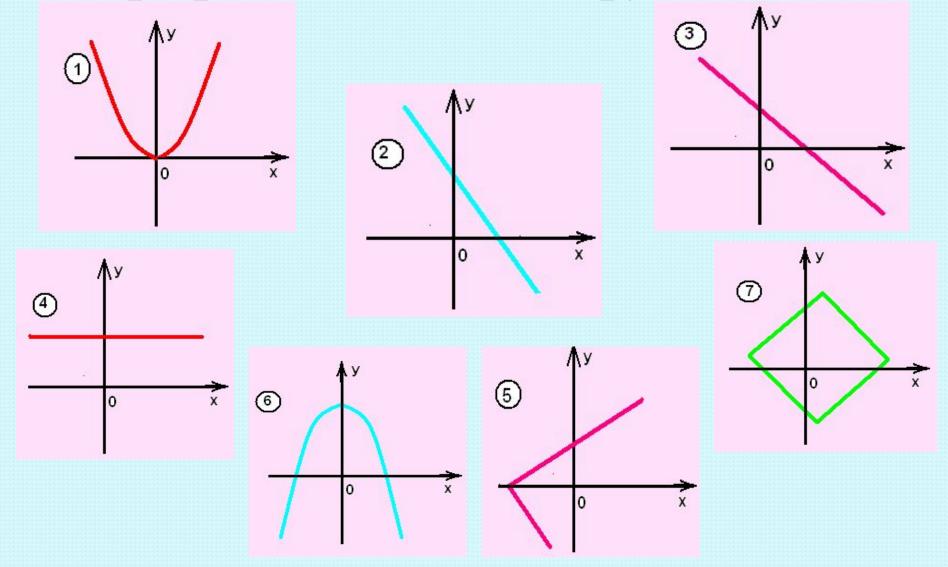
3.
$$y = -5x$$
;

4.
$$y = 4 - 0.5x$$
;

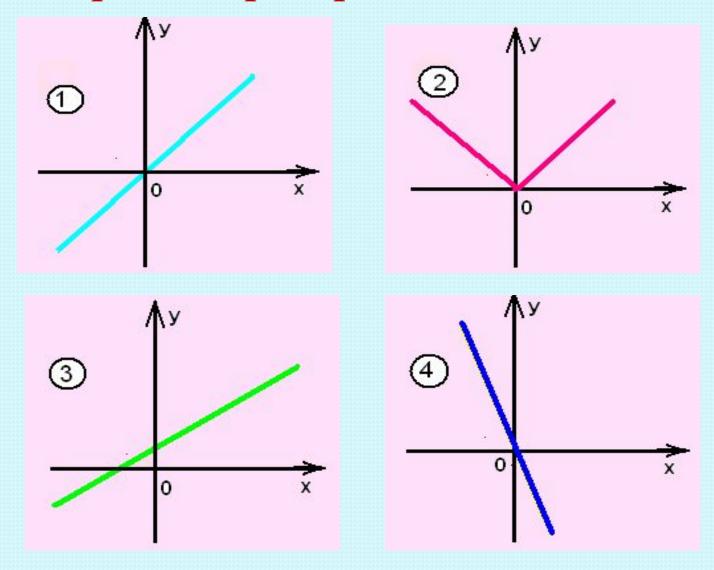
5.
$$y = -x + 2$$
;

6.
$$y=15x$$
;

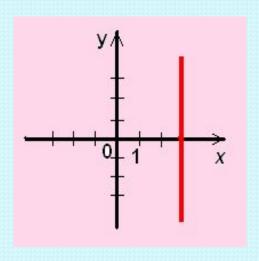
7.
$$y = \frac{2}{x}$$

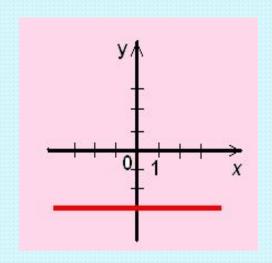

8.
$$y = -\frac{1}{2}x + 2$$

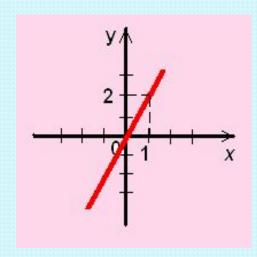
9.
$$y = \frac{x}{2}$$


10.
$$y = x (1 - x)$$

Линейная	Прямая	
функция	пропорциональная	Другие
y = kx + m	зависимость	функции
	y = kx	
y = 2x - 3	y = -5x	$y = x^2 - 3$
y = 4 - 0.5x	$y = \frac{x}{2}$	$y = \frac{2}{x}$
$y = -\frac{1}{2}x + 2$	y = 15x	y = x(1-x)


Какой из этих графиков является графиком линейной функции?




Какой из этих графиков является графиком прямой пропорциональности?

Задайте формулой линейную функцию

$$x = 3$$

$$v = -3$$

$$y = 2x$$

Задание 1

1 ряд

$$y = 3x + 5$$

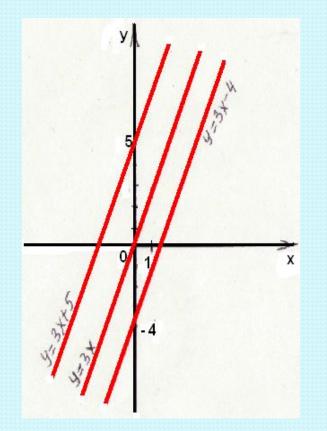
$$y = 3x - 4$$

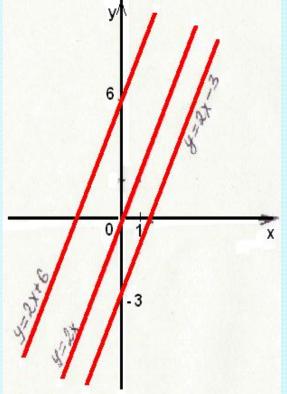
$$y = 3x$$

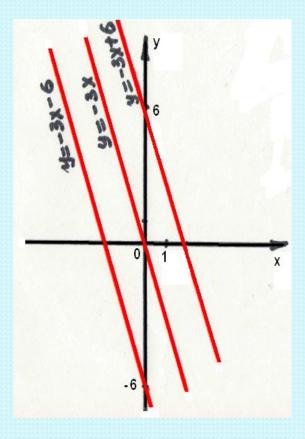
2 ряд

$$y = 2x + 6$$

$$y = 2x - 3$$


$$y = 2x$$


3 ряд

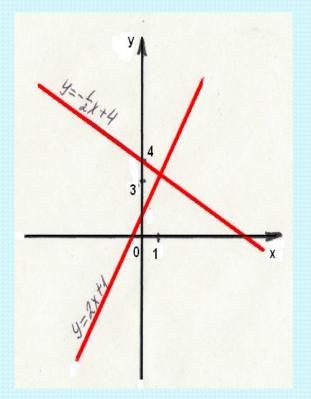

$$y = -3x - 6$$

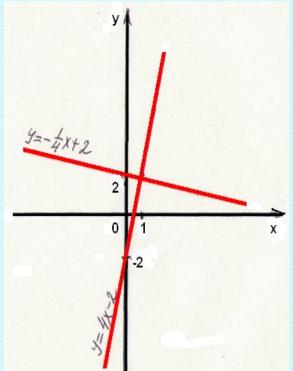
$$y = -3x + 6$$

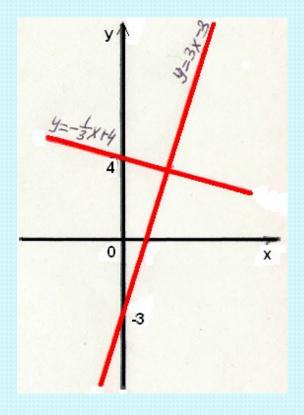
$$y = -3x$$

Задание 2

1 ряд y = 2x + 1 $y = -\frac{1}{2}x + 4$


$$2 ряд$$


$$y = 4x - 2$$


$$y = -\frac{1}{4}x + 2$$

$$3$$
 ряд
$$y = 3x - 3$$

$$y = -\frac{1}{3}x + 4$$

Линейные	Алгебраическое	Геометрический вывод
функции	условие	
$y = k_1 x + m_1$	1) $k_1 = k_2$,	1) Прямые $y = k_1 x + m_1 u$
$y = k_2 x + m_2$	$m_1 \neq m_2$	y = k ₂ x + m ₂ параллельны
	2) $k_1 = k_2$,	2) Прямые $y = k_1 x + m_1 u$
	$\mathbf{m_1} = \mathbf{m_2}$	$y = k_2 x + m_2$ совпадают
	$\mathbf{k}_{1} \neq \mathbf{k}_{2}$	3) Прямые $y = k_1 x + m_1 u$
	1	$y = k_2 x + m_2$ пересекаются
		4) Прямые $y = k_1 x + m_1 u$
	\mathbf{K}_{2}	$y = k_2 x + m_2$
		перпендикулярны

Функции заданы формулами:

1)
$$y = 1.5x + 6$$
;

2)
$$y = 0.5x + 4$$
;

3)
$$y = 0.5x - 6$$
;

4)
$$y = 0.5x$$
;

5)
$$y = 3 + 1.5x$$
.

Назовите те из них, графики которых

- параллельны графику функции у = 0,5х + 10;
- пересекают график функции у = - 1,5х;
- перпендикулярны графику функции y = - 2x + 1.

Подставьте вместо знаков * такие числа, чтобы графики линейных функций были параллельны:

$$y = 8x + 12 \quad u \quad y = *x - 3$$

$$y = - xx - 3 \quad u \quad y = xx + 1$$

Подставьте вместо знаков * такие числа, чтобы графики линейных функций пересекались:

$$y = 7x + 8$$
 u $y = *x - 4;$
 $y = 2x + *u$ $y = 2x - *.$

Подставьте вместо знаков * такие числа, чтобы графики линейных функций были перпендикулярны:

$$y = 3x + 11$$
 u $y = *x - 5$

$$y = 0.5x - 1$$
 u $y = *x + 4$

Рене Декарт (1596 – 1650)

французский математик и философ 17 века, составитель *знаменитого* трактата «Геометрия» (1637), где впервые был изложен координатный метод Среди многих функций Есть одна нужнейшая Важная, старейшая. Зовем ее

линейная.

прямая,

Графиком которой Является

Строгая, красивая, Бесконечная такая.

Если k_1 равно k_2 , Прямые

параллельные

тогда.

A если при этом b_1 равно b_2 , То прямые

совпадут тогда.

При k_1 , не равном k_2 ,

Прямые

пересекаются

всегда,

A если $k_1 = -\frac{1}{k_2}$,
То прямые

перпендикулярные

тогда.

И каков же тут итог, Если наш учитель строг? Любой ответ по «месту

жительства» прямых

Найдем мы при условиях

любых.