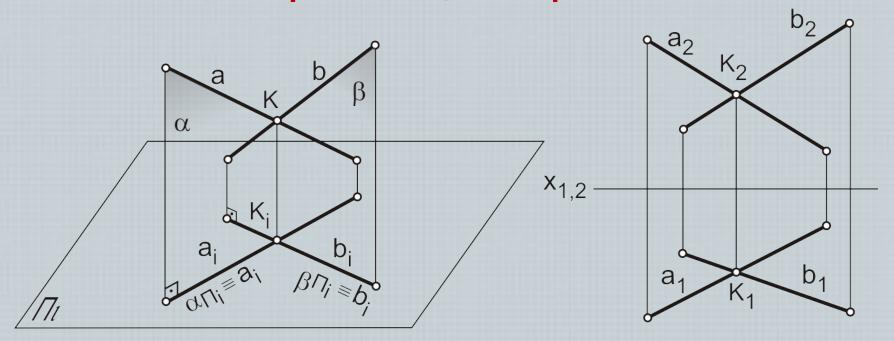
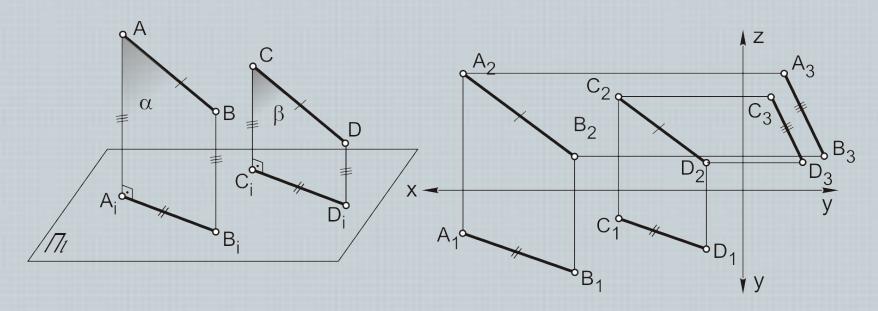


Пересекающиеся прямые



Графический признак: (а ∩ b = K) ⇒ (а, ∩ b, = K,), (а, ∩ b, = K,), K, K, \bot х,, т.е. если две прямые а и b пересекаются в точке K, то проекции K, и K, этой точки принадлежат одноименным проекциям пересекающихся прямых и, следовательно, лежат на линии проекционной связи K, \bot х, между этими проекциями

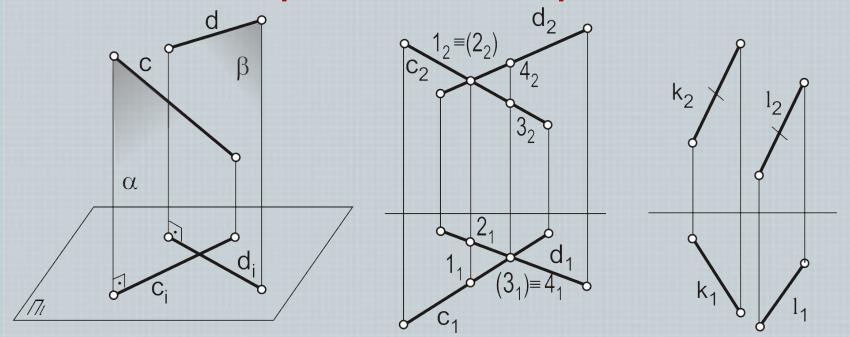
Параллельные прямые



Графический признак параллельности прямых:

если одноименные проекции прямых на каждой из плоскостей проекций параллельны между собой, то и сами прямые в пространстве параллельны между собой

Скрещивающиеся прямые



Графический признак скрещивающихся прямых:

признак основан на невыполнении признаков параллельности или пересечения таких прямых.

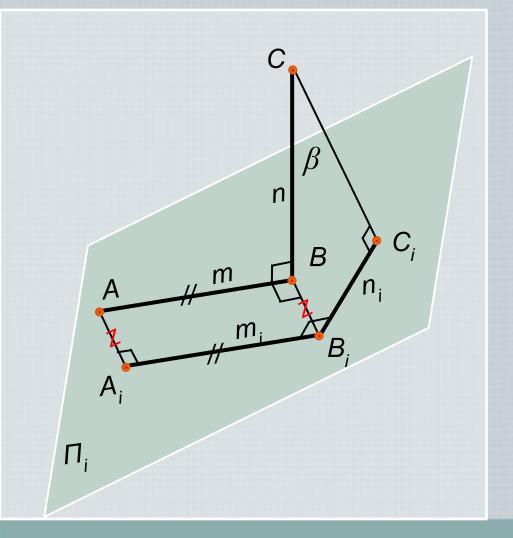
Точки пересечения одноименных проекций на смежных плоскостях не лежат на линии их проекционной связи, а параллельность проекций может иметь место только на одной из плоскостей проекций

дано: Теорема о проецировании прямого угла

AB \perp BC; AB II Π_i ; BC II

^l<mark>Доказать,</mark> что А_¡В_; ⊥ В_¡С_¡

Доказательство:



- AB ⊥ BC и AB II П_і по условию теоремы;
- 2) AB \perp BB_і из условия ортогонального проецирования

$$BB_{i} \perp \Pi_{i} \Rightarrow$$

$$AB \perp \beta(BC \cap BB_{i}) \equiv$$

$$(BCC_{i}B_{i});$$

- 3) $(AB | AB_i) \Rightarrow$
- $A_iB_i \perp \beta(BCC_iB_i);$
- 4) $(B_i C_i \subset \beta(BCC_i B_i) \Rightarrow A_i B_i \perp B_i C_i$,

что и требовалось доказать