Что такое findtheslide.com?

FindTheSlide.com - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация, доклад на тему Векторы в пространстве

Презентация на тему Векторы в пространстве, из раздела: Математика. Эта презентация содержит 10 слайда(ов). Информативные слайды и изображения помогут Вам заинтересовать аудиторию. Скачать конспект-презентацию на данную тему можно внизу страницы, поделившись ссылкой с помощью социальных кнопок. Также можно добавить наш сайт презентаций в закладки! Презентации взяты из открытого доступа или загружены их авторами, администрация сайта не отвечает за достоверность информации в них. Все права принадлежат авторам презентаций.

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат OX Положительное направление осей (в правосторонней системе координат) выбирают так, чтобы при повороте Положение точки A на плоскости определяется двумя координатами x0 и y0. Координата Уравнение окружности с центром в начале координат: x2 + y2 = R2Уравнение Определение. Единичным вектором или ортом называется вектор, длина которого равна единице и Определение. Вектора  i, j, k называются координатными векторами. Эти векторы некомпланарны, Свойства векторов, заданных координатами Координаты нулевого вектора равны нулю. Координаты равных векторов Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно Конец!
Слайды презентации

Слайд 1

Выполнил ученик 11 класса
Юдин Владимир
Учитель математики
Стрельникова Л.П.

Векторы в пространстве.

Проект на тему:

2009 год.


Слайд 2 Прямоугольная система координат на плоскости образуется

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат двумя взаимно перпендикулярными осями координат OX и OY. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения одинаковы для обеих осей.

Прямоугольная система координат.


Слайд 3 Положительное направление осей (в правосторонней системе

Положительное направление осей (в правосторонней системе координат) выбирают так, чтобы при координат) выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° еe положительное направление совпало с положительным направлением оси OY. Четыре угла (I, II, III, IV), образованные осями координат OX и OY, называются координатными углами.

Направление осей


Слайд 4 Положение точки A на плоскости определяется

Положение точки A на плоскости определяется двумя координатами x0 и y0. двумя координатами x0 и y0. Координата x0 называется абсциссой точки A, координата y — ординатой точки A.
Если точка A лежит в координатном угле I, то точка A имеет положительные абсциссу и ординату. Если точка A лежит в координатном угле II, то точка A имеет отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном угле III, то точка A имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном угле IV, то точка A имеет положительную абсциссу и отрицательную ординату.

Слайд 5 Уравнение окружности с центром в начале

Уравнение окружности с центром в начале координат: x2 + y2 = координат: x2 + y2 = R2
Уравнение окружности с центром в точке (x0;y0) : (x - x0)2 + (y - y0)2 = R2Прямые x, y, z называются координатными осями (или осями координат), точка их пересечения O – началом координат, а плоскости xOy, xOz и yOz – координатными плоскостями. Точка O разбивает каждую координатную ось на две полупрямые, которые называются положительной и отрицательной полуосями.
Координатой точки A по оси x будем называть число, равное по абсолютной величине длине отрезка OAx: положительное, если точка A лежит на положительной полуоси x, и отрицательное, если она лежит на отрицательной полуоси.
Аналогично можно определить координаты y и z точки A. Координаты точки A записываются в скобках рядом с названием этой точки: A (x; y; z).

Уравнение окружности.


Слайд 6 Определение. Единичным вектором или ортом называется

Определение. Единичным вектором или ортом называется вектор, длина которого равна единице вектор, длина которого равна единице и который направлен вдоль какой-либо координатной оси.
Единичный вектор, направленный вдоль оси x, обозначается i.
Единичный вектор, направленный вдоль оси y, обозначается j.
Единичный вектор, направленный вдоль оси z, обозначается k.

Декартова система координат.


Слайд 7 Определение. Вектора i, j, k

Определение. Вектора  i, j, k называются координатными векторами. Эти векторы называются координатными векторами.
Эти векторы некомпланарны, а значит, любой вектор a можно разложить по координатным векторам: a = x i+y j+z k.
Коэффициенты разложения определяются единственным образом и называются координатами вектора a в данной системе координат.

Слайд 8 Свойства векторов, заданных координатами
Координаты нулевого

Свойства векторов, заданных координатами Координаты нулевого вектора равны нулю. Координаты равных вектора равны нулю.
Координаты равных векторов соответственно равны.
Координаты вектора суммы двух векторов равны сумме соответствующих координат этих векторов.
Координаты вектора разности двух векторов равны разностям соответствующих координат этих векторов.
Координаты вектора произведения данного вектора на число равны произведениям соответствующих координат этого вектора на данное число.

Свойства векторов.


Слайд 9 Векторы являются перпендикулярными тогда и только

Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение тогда, когда их скалярное произведение равно нулю.
Даны два вектора a(x_{a}; y_{a}) и b(x_{b}; y_{b}). Эти векторы будут перпендикулярны, если выражение xaxb + yayb = 0.

Условие перпендикулярности векторов.

Условие коллинеарности векторов

Векторы коллинеарны, если абсцисса первого вектора относится к абсциссе второго так же, как ордината первого — к ординате второго.
Даны два вектора a(x_{a}; y_{a}) и b(x_{b}; y_{b}). Эти векторы коллинеарны, если xa = λ xb и ya = λ yb, где λ=R.


Слайд 10 Конец!

Конец!