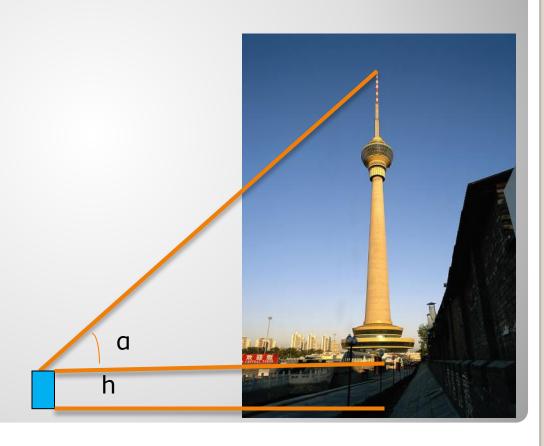
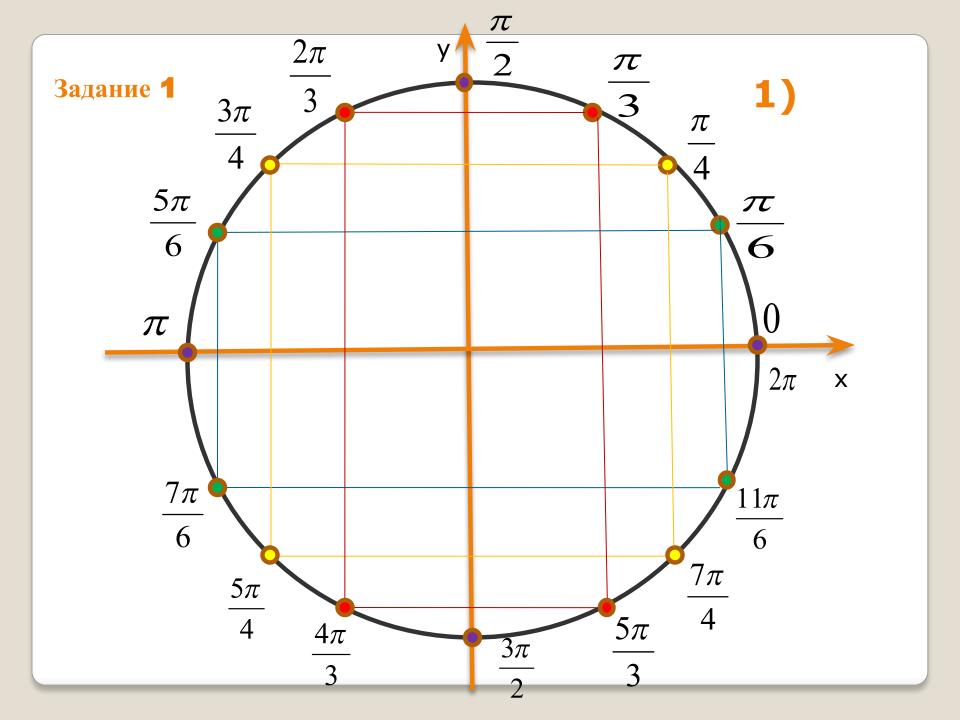
Учебная встреча по математике «Знаем ли мы тригонометрию»

МОУ СОШ №5 п.г.т. Сафоново Мурманская область

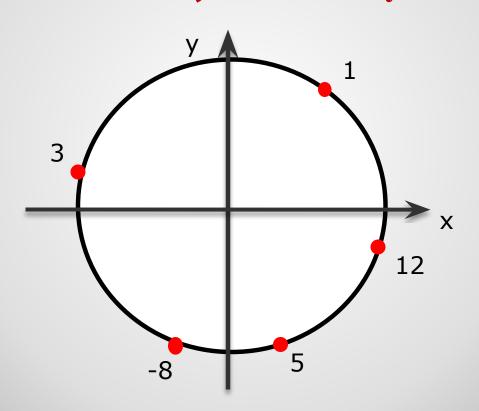

Ты можешь стать умнее тремя путями:

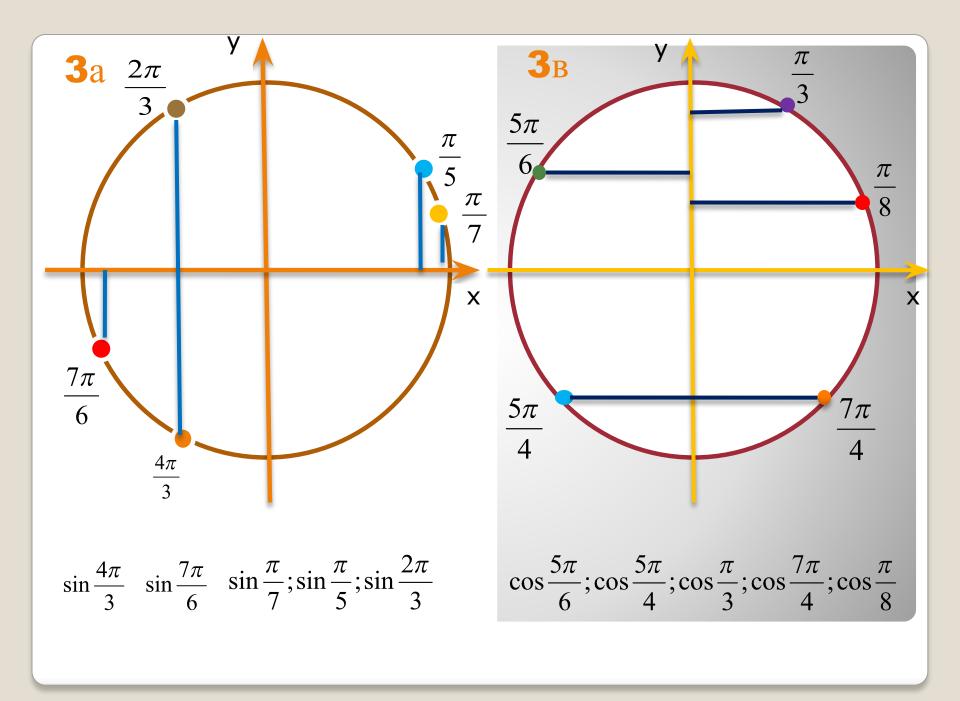
- •путём опыта это самый горький путь;
- •путём подражания это самый лёгкий путь;
- •путём размышления это самый благородный путь.

Китайская пословица.



Измерить высоту башни




Найти ширину реки

2) Какой четверти числового аргумента принадлежит точка, соответствующая числу:

Задание 2а)

Знаки синуса, косинуса, тангенса и котангенса по четвертям окружности

четверть	1	2	3	4
sint	+	+	-	-
cost	+	-	-	+
tgt, ctgt	+	-	+	-

2b) Таблица значений sint, cost, tgt, ctgt

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{7\pi}{6}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
sint	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	$-\frac{1}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0
cost	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$-\frac{\sqrt{3}}{2}$	0	$\frac{\sqrt{2}}{2}$	1
tgt	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	0	$\frac{1}{\sqrt{3}}$	-	-1	0
ctgt	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-	$\sqrt{3}$	0	-1	-

Задание 3

Закончите равенства:

$$\sin(t+2\pi) = \sin t \quad \sin(t+\pi) = -\sin t \quad \sin(t+\frac{\pi}{2}) = \cos t$$

$$\cos(t+2\pi) = \cos t \quad \cos(2\pi - t) = \cos t \quad \cos(t+\frac{\pi}{2}) = -\sin t$$

$$\sin(\pi - t) = \sin t \quad \sin(\frac{\pi}{2} - t) = \cos t \quad \sin(2\pi - t) = -\sin t$$

$$\cos(\pi - t) = -\cos t \quad \cos(\frac{\pi}{2} - t) = \sin t \quad \cos(2\pi - t) = \cos t$$

Задание 4

Тригонометрические функции числового аргумента

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \qquad tg\alpha \cdot ctg\alpha = 1$$

$$1+ctg^2t = \frac{1}{\sin^2 t} \qquad \frac{1}{\cos^2 t} = 1+tg^2t$$

Синус и косинус суммы и разности аргументов

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

Формулы двойного аргумента

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

$$\cot 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

$$\cot 2\alpha = \frac{\cot 2\alpha - 1}{2\cot 2\alpha}$$

Формулы понижения степени

$$\cos^2 t = \frac{1 + \cos 2x}{2}$$

$$\sin^2 t = \frac{1 - \cos 2x}{2}$$

$$tg^2t = \frac{1-\cos 2x}{1+\cos 2x}$$

Формулы преобразования суммы в произведение

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

Учебная встреча

