Средние величины

Средняя величина обобщает качественно однородные значения признака.

Виды средних:

$$X = \frac{\sum_{i=1}^{n} X_i}{n}$$

средняя арифметическая

взвешенная средняя арифметическая

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i' \cdot f_i}{\sum_{i=1}^{n} f_i}$$

Возраст	Число больных $\boldsymbol{f}_{\mathbf{i}}$	Середина инт. $X_{\mathbf{i}}^{\ \prime}$	$X_i'f_i$	
17 - 20	48	18.5	888	
20 - 30	120	25	3000	
30 - 40	75	35	2625	
40 - 50	62	45	2790	
50 - 65	54	57.5	3105	

12408

Х = 34.56 года

средняя квадратическая

$$X_{\kappa B} = \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{n}}$$

средняя степенная

$$X_{c\tau} = \sqrt[k]{\frac{\sum_{i=1}^{n} X_{i}^{k}}{n}}$$

средняя гармоническая

$$X_{rapm} = \frac{1}{\sum_{i=1}^{n} \frac{1}{X_i}}$$

средняя геометрическая

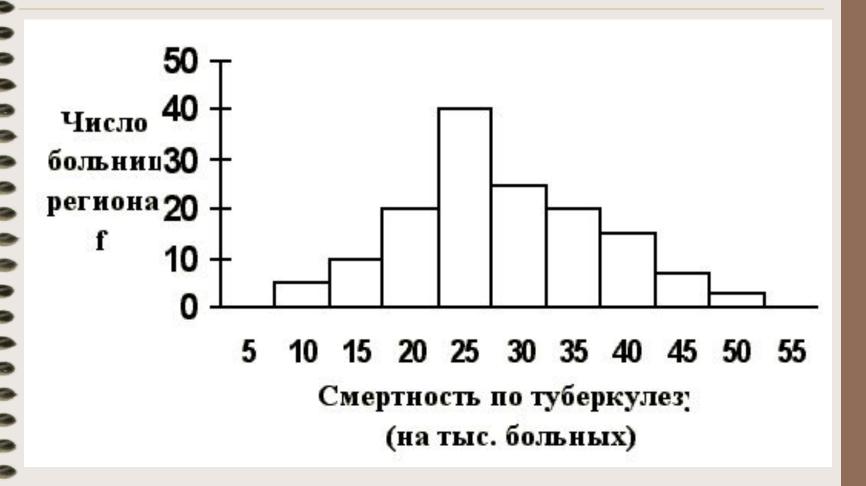
$$X_{reoM} = \sqrt[n]{X_1 \cdot X_2 \cdot \ldots \cdot X_n}$$

Правило мажорантности средних величин:

$$\overline{X}_{\text{гарм}} \le \overline{X}_{\text{геом}} \le \overline{X}_{\text{ариф}} \le \overline{X}_{\text{кв}} \le \overline{X}_{\text{ст}}$$

Вариации массовых явлений

Вариацией значений какого - либо признака в совокупности называется различие его значений у разных единиц данной совокупности в один и тот же период или момент времени.


Вариационный ряд - упорядоченное распределение единиц совокупности по возрастающим / убывающим значениям признака и подсчет числа единиц с тем или иным признаком.

++

	Число койко-дней в
	кардиологических
Наименование больницы	отделениях больниц
	города
Больница N3	14.9
Железнодорожная клиника	16.0
Больница N1	18.6
Больница N2	25.2

-		
~		
<3		
~ 3		
	1	
	Число забитых мячей , X _і	Число игр с таким кол - вом X ₁
- 3	0	21
	1	41
	2	41
	3	37
- 3	3	
-	4	19
-3	5	10
	6	6
	7	2
- 3		7.1
- 3		

Как определить число требуемых интервалов в интервальном вариационном ряду?

Формула Стержеса:

k = integer [1 + 3.32 lg(n)]

тогда, ширина интервала:

$$\tau = \frac{X_{\text{max}} - X_{\text{min}}}{k}$$

Структурные характеристики вариационного ряда

Медиана распределения

Медиана - это численное значение признака у той единицы изучаемой совокупности, которая находится в середине ранжированного ряда. Медиана делит совокупность на две равные части. Первая половина единиц статистической совокупности (после ранжирования!) имеет значение варьирующего признака меньше, чем медиана, элементы из второй половины совокупности - больше.

Пример: группа из 7 студентов в возрасте от 17 до 23 лет сидят в аудитории за семью столами. Вариационный признак - возраст студента.

Первичные данные

Номер	1	2	3	4	5	6	7
стола Возраст студента	21	17	19	22	18	20	23

Строим ранжированный (по возрасту) вариационный ряд

Номер	2	5	3	6	1	4	7
стола				No.			
Возраст	17	18	19	20	21	22	23
студента		ų.	57	92 92			

Медиана равна 20 годам. Т.е. возраст четвертого (в ранжированном вариационном ряду) студента делит совокупность на две равные части. Трое студентов моложе его, трое - старше.

Если число единиц наблюдения (число элементов статистической совокупности) четное, то медианой считается средняя арифметическая из значений признака у двух серединных членов совокупности.

Рассмотрим абсолютно аналогичный пример, но для случая, когда наблюдается группа из 8 студентов.

Первичные данные

Номер стола	1	2	3	4	5	6	7	8
Возраст студента	21	17	19	22	18	20	23	20.5

Ранжированный вариационный ряд (по возрасту)

Номер стола	2	5	3	6	8	1	4	7
Возраст студента	17	18	19	20	20.5	21	22	23

$$\frac{[20+20.5]}{2} = 20.25$$

Определение медианы по интервальному ряду

Предположим, что первичные данные обработаны, и по ним построен интервальный вариационный ряд. Пример: статистическому наблюдению подвергаются больницы области. Число больниц - 143. Вариационный признак число коек. Строится интервальный ряд:

	Группы больниц по числу коек Х _і	Число больниц _{fj}	Середина Интервала Х _і	X _i 'f i	Накопленная частота ƒ i
	10-15	6	12,5	75	6
-	15-20	9	17,5	157,5	15
	20-25	20	22,5	450	35
	25-30	41	27,5	1127,5	76
	30-35	26	32,5	845,5	102
	35-40	21	37,5	787,5	123
	40-45	14	42,5	595	137
	45-50	5	47,5	237	142
	50-55	1	52,5	52,5	143
	итого:	143	3400007440	4327,5	

Предположим, что у нас нет в нашем распоряжении первичных данных. В этом случае мы не можем построить ранжированный вариационный ряд, как это было сделано в предыдущем примере.

В нашем распоряжении есть только обработанные до нас данные, которые уже сведены к интервальному ряду. Например, интервальный ряд (в виде гистограммы) был взят нами из периодической литературы.

Сами исходные данные не публиковались.

Медиана распределения вычисляется с использованием интервального ряда по формуле:

$$M_e = X_0 + \frac{\sum_{i=1}^k f_i'}{2} - f_{M_e-1}' \cdot \tau$$

X_о - низшая граница интервала, в котором находится медиана;

 $f_{(Me-1)}^{\Box}$ - накопленная частота в интервале, предшествующем медианному; f_{Me} - частота в медианном интервале; t - величина интервала; t - число групп

Вычислим медиану по приведенной выше формуле:

- 1) 143/2~ 72 -> медиана находится в четвертом интервале (т.к. полученное число 72 ближе всего к 76 в столбце накопленных частот). Этот интервал отмечен значком ◆ в таблице.
- 2) в четвертом интервале: низшая граница $X_0 = 25$, частота $f_{Me} = 41$
- 3) в предшествующем (третьем) интервале накопленная частота равна $\mathbf{f}'_{(\text{Me-1})} = \mathbf{35}$
- 4) ширина каждого интервала = 5 (см. первый столбец интервалов)
- 5) Окончательно, Me=25+[(72-35)/41]*5=29.5 коек.

Квартили распределения

Вычисляются абсолютно аналогично медиане по формулам:

$$Q_{1} = x_{0} + \frac{\left[\sum_{j=1}^{k} f_{j}^{\prime} / 4\right] - f_{(Q_{1}-1)}^{\prime}}{f_{Q_{1}}} \cdot \tau =$$

$$= 25 + \frac{(35.75 - 35)}{41} \cdot 5 = 25.09$$

$$Q_{2} = M_{e}$$

$$\left[3\sum_{j=1}^{k} f_{j}^{\prime} / 4\right] - f_{(Q_{3}-1)}^{\prime}$$

$$Q_{3} = x_{0} + \frac{\left[3\sum_{j=1}^{k} f_{j}^{\prime} / 4\right] - f_{(Q_{3}-1)}^{\prime}}{f_{Q_{3}}} \cdot \tau =$$

$$= 35 + \frac{(107.25 - 102)}{21} \cdot 5 = 36.25$$

Общее название для вышеприведенных структурных характеристик вариационного ряда - квантили. Если ряд делится на 4 части то в этом случае квантили называются квартилями (см. формулы выше), на 5 частей - квинтили; на 10 - <u>децили</u>; на 100 - <u>перцентили</u>.

Мода распределения.

Модальный интервал - интервал с наибольшей частотой.

Мода:

$$M_0 = X_0 + \frac{f_{M_0} - f_{(M_0-1)}}{[f_{M_0} - f_{(M_0-1)}] + [f_{M_0} - f_{(M_0+1)}]} \cdot \tau$$

по-прежнему, x_0 -нижняя граница модального интервала, f_{M_0} - частота в модальном интервале.

Рассмотрим пример с обследованием 143 больниц.

Группы больниц по числу коек Х _і	Число больниц _{f_i}	Середина Интервала Хі	Xi'fi	Накопленная частота ƒ i
10-15	6	12,5	75	6
15-20	9	17,5	157,5	15
20-25	20	22,5	450	35
25-30	41	27,5	1127,5	76
30-35	26	32,5	845,5	102
35-40	21	37,5	787,5	123
40-45	14	42,5	595	137
45-50	5	47,5	237	142
50-55	1	52,5	52,5	143
итого:	143	12000 Tab	4327,5	

Модальный интервал - четвертый. Наибольшая частота (41) относится к этому интервалу. Т.е., в рассматриваемом примере модальный и медианный интервалы совпали. Это часто встречается, но так бывает не всегда!

Частоты в интервалах в предшествующем (число 20) и следующим (это число 26) за модальным интервалом отмечены в таблице бирюзовой заливкой.

Вычислим моду:

$$M_0 = 25 + \frac{(41-20)}{(41-20)+(41-26)} \cdot 5 = 27.9$$

 $M_0 < M_e < \overline{x}$ для нормального распределения. 7.