Простейшие тригонометрически е уравнения 10 классе

Огурцова Алла Юрьевна

учитель высшей квалификационной категории МОУ Рощинская СОШ «Образовательный центр»

I. Вычисли устно:

$$\sin\frac{3\pi}{4} \qquad \cos\frac{5\pi}{6} \qquad \sin 0 \qquad \cos\frac{9\pi}{2}$$

$$\cos \frac{5\pi}{6}$$

$$\cos \frac{9\pi}{2}$$

$$\sin\left(-\frac{\pi}{3}\right)$$

$$\sin\left(-\frac{\pi}{3}\right)$$
 $\cos\left(-\frac{2\pi}{3}\right)$

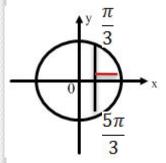
$$arcsin \frac{\sqrt{2}}{2}$$

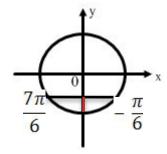
$$arcsin\left(-\frac{\sqrt{3}}{2}\right)$$

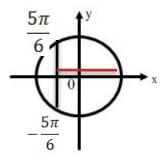
$$\arcsin\frac{\sqrt{2}}{2}$$
 $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$ $\cos\left(\arccos\left(-\frac{1}{2}\right)\right)$

$$arccos \frac{1}{2}$$

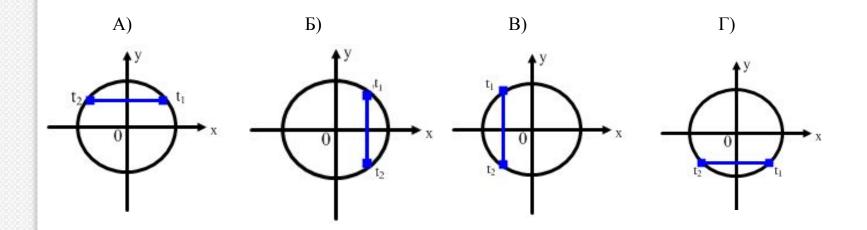
$$\arccos\left(-\frac{\sqrt{2}}{2}\right)$$


$$\arccos\frac{1}{2}$$
 $\arccos\left(-\frac{\sqrt{2}}{2}\right)$ $\sin\left(\arcsin\frac{1}{2}\right)$


II. Найди ошибку при решении неравенства:


$$cost \ge \frac{1}{2}$$

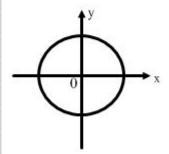
$$sint < -\frac{1}{2}$$


$$sint > -\frac{\sqrt{3}}{2}$$

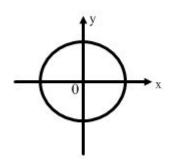
III. Для каждого рисунка подберите соответствующее уравнение

$$cost = \frac{1}{2}$$

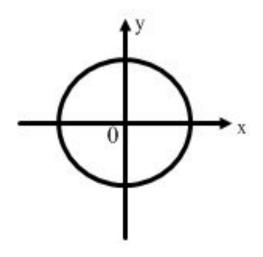
$$sint = \frac{1}{2}$$


$$cost = -\frac{\sqrt{3}}{2}$$

Простейшие тригонометрические уравнения


sin t=a cos t=a где -1≤a≤1

<u>если IaI>1</u>, то уравнение решения не имеет


 $cos t=a, |a| \le 1$

sin t=a, $|a| \le 1$

Частные случаи решения тригонометрических уравнений

	a=1	a=0	a= -1
sint = a			
cost = a			

	a=1	a=0	a= -1	$ a < 1$, $a \neq 0$
sint = a	$t = \frac{\pi}{2} + 2\pi k$	$t = \pi k$	$t = -\frac{\pi}{2} + 2\pi k$	$t = (-1)^k arcsina + \pi k$
cost = a	$t = 2\pi k$	$t = \frac{\pi}{2} + \pi k$	$t = \pi + 2\pi k$	$t = \pm arccosa + 2\pi k$

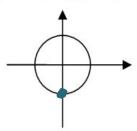
Памятка по решению простейших тригонометрических уравнений!

$$\sin t = -1 \qquad \cos t = -1$$

I. При решении уравнения вида $\sin t = 1$ или $\cos t = 1$ используем формулы для <u>частного</u> решения $\sin t = 0$ $\cos t = 0$

Для этого надо:

- 1. Записать уравнение.
- 2. Справа от него <u>построить</u> окружность и <u>отметить</u> точку (две точки) соответствующую решению уравнения.
- 3. Записать решение уравнения! Если отмечена одна точка, то прибавляем $2\pi k$, если две то πk .


Образец:

$$\cos t = 0$$

$$t = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

$$\sin t = -1$$

$$t = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

Otbet:
$$\frac{\pi}{2} + \pi k, k \in Z$$

Otbet:
$$-\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

II. При решении уравнения вида $\sin t = a$ и $\cos t = a$, где $a \in [-1;1]$, причем $a \neq \pm 1;0$, применяем формулы для общего решения:

$$\sin t = a$$

$$\cos t = a$$

$$t = (-1)^k \arcsin a + \pi k, k \in Z$$

$$t = \pm \arccos a + 2\pi k, k \in \mathbb{Z}$$

Методы решения простейших тригонометрических уравнений

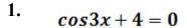
 $6sin^2x + sinx = 2;$

$$\cos\left(2x - \frac{\pi}{3}\right) - 1 = 0$$

 $2\cos x - 3\sin x\cos x = 0$

$$\cos\left(2x - \frac{\pi}{3}\right) - 1 = 0$$

$$6sin^2x + sinx = 2;$$


$$2\cos x - 3\sin x\cos x = 0$$

Самостоятельная работа

I вариант (БУ)

II вариант (ПУ)

Решите уравнения:

$$2. \qquad \sin\left(x+\frac{\pi}{4}\right)=1$$

$$3. \qquad 4\cos^2 x - 4\cos x + 1 = 0$$

$$1. \quad 2\sin 2x - 1 = 0$$

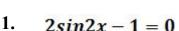
2.
$$2\cos^2 x + 5\cos(x+\pi) + 2 = 0$$

3.
$$\cos^2 x - \sin^2 5 - \cos^2 5 = 0$$

В ответе запишите букву (код ответа) соответствующую ответу вашего решения.

	a=1	a=0	a= -1	$ a <1, a\neq 0$
sint = a	$t = \frac{\pi}{2} + 2\pi k$	$t = \pi k$	$t = -\frac{\pi}{2} + 2\pi k$	$t = (-1)^k arcsina + \pi k$
cost = a	$t = 2\pi k$	$t = \frac{\pi}{2} + \pi k$	$t = \pi + 2\pi k$	$t = \pm arccosa + 2\pi k$

Самостоятельная работа


I вариант (БУ)

1.

II вариант (ПУ)

2.
$$2\cos^2 x + 5\cos(x+\pi) + 2 = 0$$

3.
$$\cos^2 x - \sin^2 5 - \cos^2 5 = 0$$

 $\cos 3x + 4 = 0$

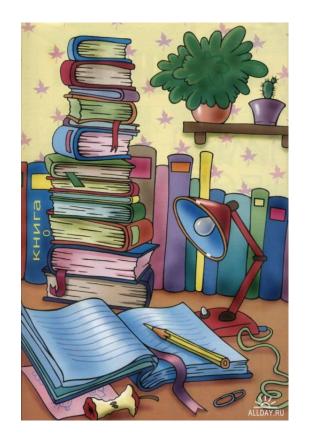
$$2. \qquad \sin\left(x+\frac{\pi}{4}\right)=1$$

$$3. \qquad 4\cos^2 x - 4\cos x + 1 = 0$$

В ответе запишите букву (код ответа) соответствующую ответу вашего решения.

I вариант: УРА

Домашнее задание


§22. No No 4(a), 5, 11-12(B, Γ), 23(a, 6), 25(a, 6).

Дополнительное задание: (см. так же электронную почту)

•Построить график функции

$$y = \sin(arccosx)$$

•Решить уравнение $2\cos(\pi x) = \sqrt{3}$

