Применение симметрии при решении алгебраических задач

Учениц 10И класса: Коротковой Анастасии Журавлёвой Дарьи Руководитель: учитель высшей категории Тимофеева М. Н. **Цель работы:** глубже изучить понятие «симметрия» и ее практическое применение.

Задачи:

- изучить виды симметрии, преобразования;
- изучить понятие «функция», способы задания функции, свойства функции;
- изучить методы решения уравнений высших степеней;
- показать практическое применение данных вопросов.

Существуют **преобразования**, которые сохраняют расстояния между точками (**движение**) и преобразования, которые изменяют расстояния между точками в некоторое число раз (**гомотетия — подобие**).

Симметрия — движение, преобразование плоскости или пространства, при котором сохраняется расстояние между точками.

Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х из множества X соответствует единственное значение переменной у из множества Y.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.

Чётность функции.

Функция y=f(x) может быть чётной или нечётной, если её область определения симметрична относительно 0;

Чётная функция: f(x)=f(-x) для любых x из D(y);

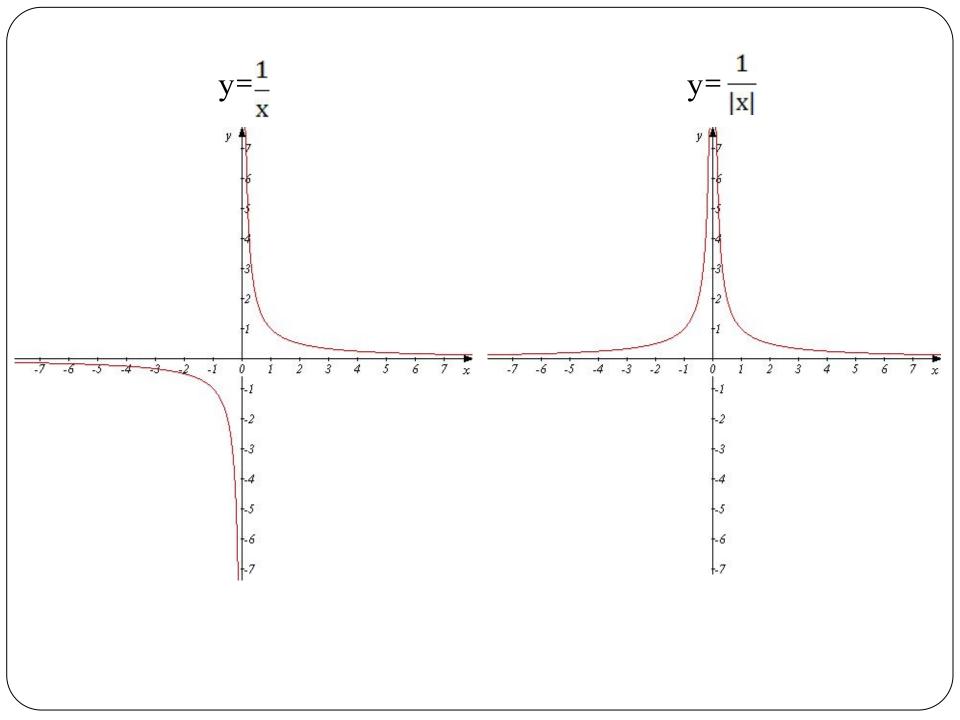
Нечётная функция: -f(x)=f(-x) для любых x из D(y);

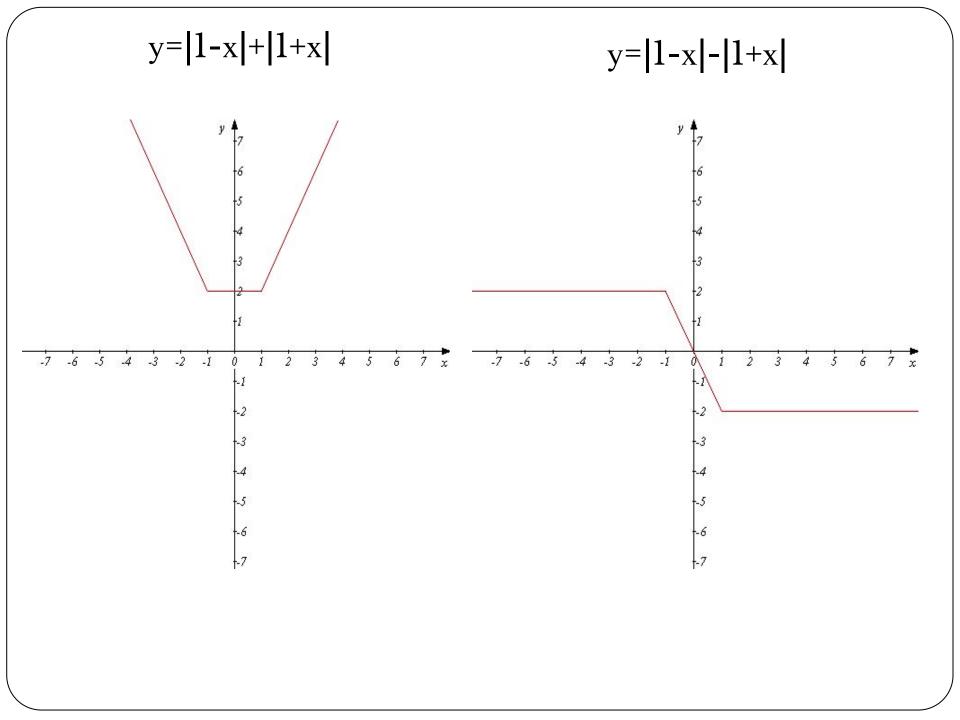
Если не выполняется ни одно из соотношений, то функцию называют ни чётной, ни нечётной.

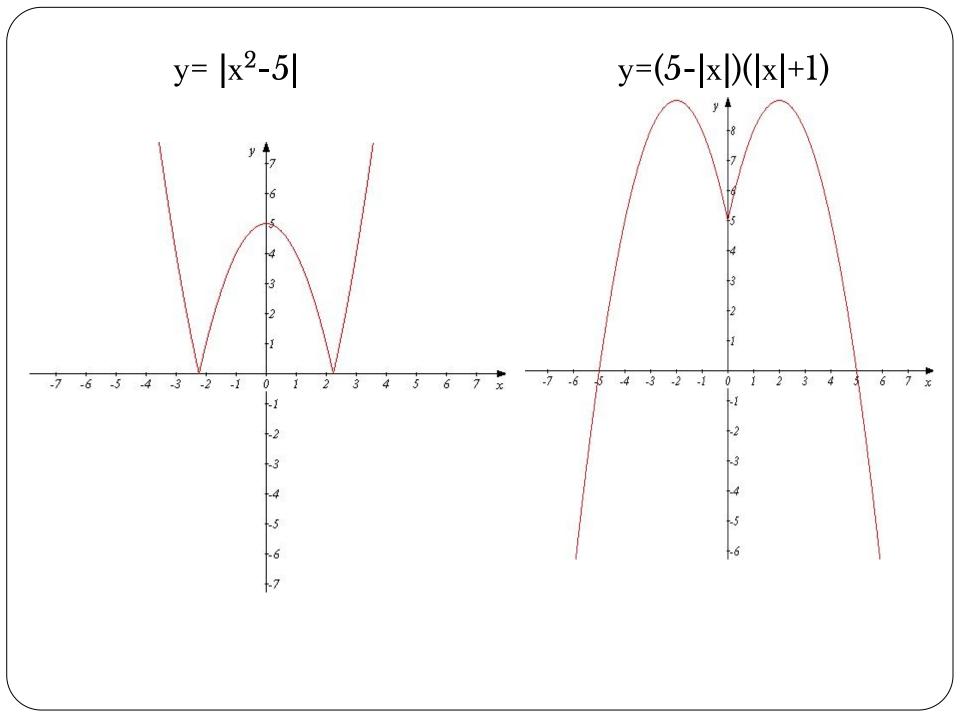
Монотонность функции.

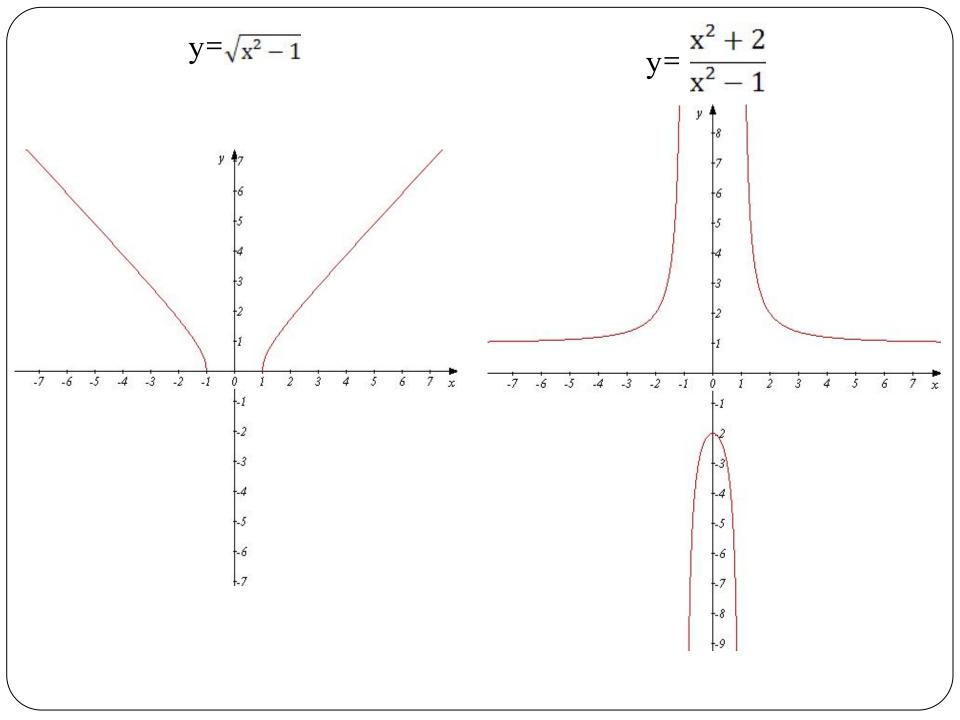
Функция y=f(x) монотонно возрастает на промежутке I, если для любых x_1 и x_2 из I таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) < f(x_2)$; Функция y=f(x) монотонно убывает на промежутке I, если для любых x_1 и x_2 из I таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) > f(x_2)$.

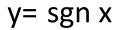
Графики функций $y=x^2$

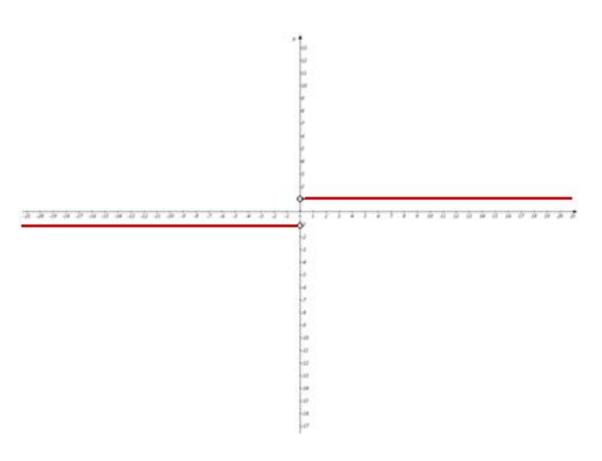






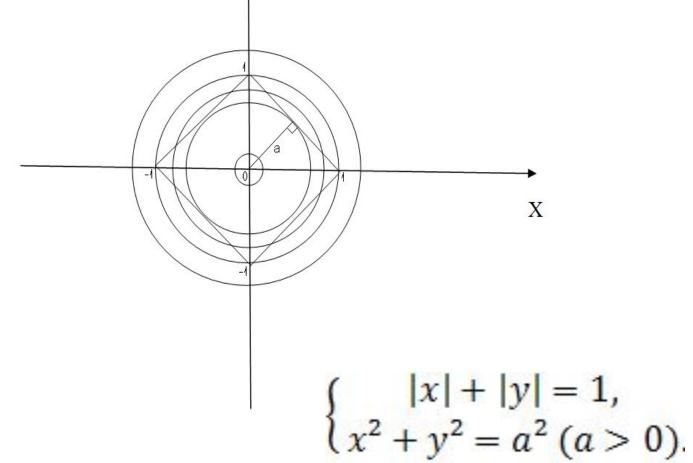






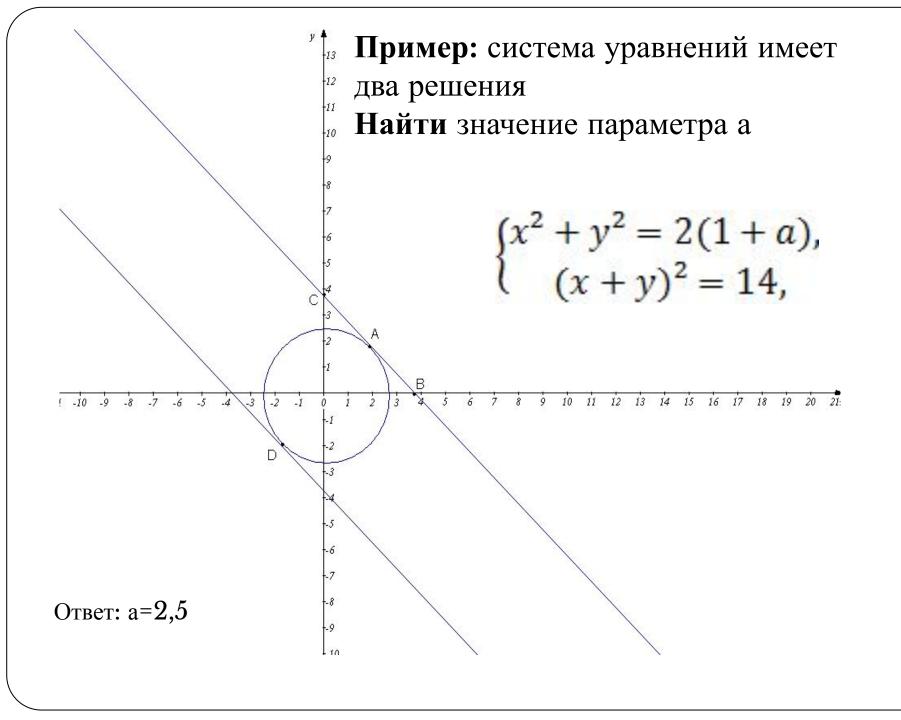
Решение систем нелинейных уравнений с параметром графически

Пример: дана система уравнений **Найти** количество решений в зависимости от параметра а



Ответ:

 $0 < a < \frac{\sqrt{2}}{2}$ или a > 1, то нет решений; если $a = \frac{\sqrt{2}}{2}$ или a = 1, то решений 4; если $\frac{\sqrt{2}}{2}$ < a < 1, то решений восемь.



Решение некоторых уравнений аналитическими методами, основанных на симметрии

Уравнение вида $a_0 x^n + a_1 x^{n-1} + + a_{n-1} x + a_n = 0$ Где a_0 ,... a_n - некоторые числа $a_0 \neq 0$,

х- переменная, называется уравнением **n**- степени от одной переменной **x**.

Симметрическое (возвратное) уравнение четвёртой степени

$$ax^{4} + bx^{3} + cx^{2} + bx + a = 0$$

$$ax^{4} + bx^{3} + cx^{2} - bx + a = 0$$

$$c\partial e \ a \neq 0$$

Решение симметрических уравнений высших степеней

$$2x^4 + x^3 - 11x^2 + x + 2 = 0$$

x=0 не является корнем уравнения, значит разделим обе части уравнения на $x^2 \neq 0$

$$2x^2 + x - 11 + \frac{1}{x} + \frac{2}{x^2} = 0$$

$$2\left(x^2 + \frac{1}{x^2}\right) + \left(x + \frac{1}{x}\right) - 11 = 0$$

Пусть
$$y = x + \frac{1}{x}$$
, $x^2 + \frac{1}{x^2} = y^2 - 2$

получим
$$2(y^2-2)+y-11=0$$

$$\begin{bmatrix} y = 2,5 \\ y = -3 \end{bmatrix}$$

Возвращаясь к уравнению замены, получим

$$\begin{bmatrix} x = 2 \\ x = 0.5 \end{bmatrix}$$

$$(x-a)(x-b)(x-c)(x-d) = A$$

Где a b< c< d, b-a=d-c

$$y = \frac{(x-a) + (x-b) + (x-c) + (x-d)}{4} = x - \frac{a+b+c+d}{4}$$

Решить уравнение (1-12x)(1-6x)(1-4x)(1-3x)=5

$$(12x-1)(6x-1)(4x-1)(3x-1)=5$$

$$y = \frac{1}{4} \left(\left(x - \frac{1}{12} \right) + \left(x - \frac{1}{6} \right) + \left(x - \frac{1}{4} \right) + \left(x - \frac{1}{3} \right) \right) = x - \frac{5}{24}$$

$$x = y + \frac{5}{24}$$

$$\left[y^2 - (\frac{1}{24})^2\right] \cdot \left[y^2 - (\frac{3}{24})^2\right] = \frac{5}{3 \times 4 \times 6 \times 12}$$

$$y = \frac{7}{24},$$

$$y = -\frac{7}{24}.$$

Соответствующие корни исходного уравнения равны $-\frac{1}{12}$

$$(x-a)(x-b)(x-c)(x-d) = Ax^2$$
, где $ab=cd$ $y=x+\frac{ab}{x}$ Peшить уравнение $(x+2)(x+3)(x+8)(x+12)=4x^2$ $(x^2+14x+24)(x^2+11x+24)=4x^2$ $(x+14+\frac{24}{2})(x+11+\frac{24}{2})=4$

$$\left(x + 14 + \frac{24}{x}\right)\left(x + 11 + \frac{24}{x}\right) = 4$$
$$x + \frac{24}{x} = y$$
$$(y + 14)(y + 11) = 4$$

$$\begin{cases} y = -10 \\ y = -15 \end{cases}$$

$$x = \frac{-15 - \sqrt{129}}{2}$$

$$x = \frac{-15 + \sqrt{129}}{2}$$

$$x = -6$$

$$x = -4$$

Уравнение вида $(x-a)^n + (x-b)^n = A$,где n>2, $n \in \mathbb{N}$ можно решить, используя **метод симметризации**, т.е. делая замену

решить, используя **метноо симметпризации**, т.е. делая зами
$$y=x-\frac{a+b}{2}$$
 Решить $(x-2)^6+(x-4)^6=64$ $y=\frac{x-2+x-4}{2}=x-3$ $x=y+3$ $(y+1)^6+(y-1)^6=64$ $y^6+15y^4+15y^2-31=0$, тогда, пусть $y^2=t$, получим $t^3+15t^2+15t-31=0$ $t^3+15t^2+15t-31=(t-1)(t^2+16t+31)$ $x=4$ $y=2$

Уравнения с параметром

Пример: может ли уравнение $2x^6 - x^4 - ax^2 = 1$ иметь три корня (№6.221, математика-11).

$$y = 2x^{6} - x^{4} - ax^{2} - 1$$

$$D(y)=R$$

$$y(-x) = 2x^{6} - x^{4} - ax^{2} - 1 = y(x)$$

X=0 не является корнем уравнения

Ответ: данное уравнение не может иметь три корня.

Использование свойств четности при решении уравнений

Пример (ЕГЭ 2008): дана функция g(x)=2,3+f(x-9) и нечетная функция f(x), найти значение выражения g(6)+g(8)+g(10)+g(12).

Решение:

$$g(6) = 2,3 + f(-3)$$
 $f(-x) = -f(x)$
 $g(8) = 2,3 + f(-1)$ $f(-1) = -f(1)$
 $g(10) = 2,3 + f(1)$ $f(-3) = -f(3)$
 $g(12) = 2,3 + f(3)$

Ответ: g(6)+g(8)+g(10)+g(12)=9,2

Пример(Межрегиональная заочная математическая олимпиада 2008): представьте произвольную функцию f(x), определенную на всей действительной оси, в виде суммы четной и нечетной функций.

Решение:
$$y=f(x)$$
, $D(y)=R$
 $f(x)=g(x)+h(x)$, где $g(x)$ - четная функция, $h(x)$ - нечетная функция
 $f(-x)=g(-x)+h(-x)$, $f(-x)=g(x)-h(x)$, составим систему уравнений
 $\begin{cases} f(x)=g(x)+h(x) \\ f(-x)=g(x)-h(x) \end{cases}$
Получим,
 $\begin{cases} g(x)=\frac{f(x)+f(-x)}{2} \\ f(x)+f(-x) \end{cases}$

$$\begin{cases} g(x) = \frac{f(x) + f(-x)}{2} \\ h(x) = \frac{f(x) + f(-x)}{2} \end{cases}$$
Other: $f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$

Пример(ЕГЭ 2008): нечетная функция y=f(x) определена на всей числовой прямой. Для всякого неотрицательного значения переменной x значение этой функции совпадает со значением функции g(x)=x(2x+1)(2x-1). Найдите значение функции

$$h(x) = \frac{f(x) + 2g(x)}{f(x) + g(x)}$$
, при X=-3

Pешение:
$$\begin{cases} f(x) = g(x) \\ x \ge 0 \end{cases}$$

$$f(3)=g(3)$$

$$h(-3) = \frac{f(-3) + 2g(-3)}{f(-3) + g(-3)}$$

Ответ: 1,5