Что такое findtheslide.com?

FindTheSlide.com - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация, доклад Приведение дробей к общему знаменателю

Презентация на тему Презентация Приведение дробей к общему знаменателю, из раздела: Математика. Эта презентация содержит 14 слайда(ов). Информативные слайды и изображения помогут Вам заинтересовать аудиторию. Скачать конспект-презентацию на данную тему можно внизу страницы, поделившись ссылкой с помощью социальных кнопок. Также можно добавить наш сайт презентаций в закладки! Презентации взяты из открытого доступа или загружены их авторами, администрация сайта не отвечает за достоверность информации в них. Все права принадлежат авторам презентаций.

Приведение дробей к общему знаменателю Молодых Наталья АндреевнаУчитель математики средней школы № Умножим числитель и знаменатель дроби Умножим числитель и знаменатель дроби  на Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, называют Пример 1. Приведем дробь   к знаменателю 35. Решение. Число 35 Любые две дроби можно привести к одному и тому же знаменателю, или Пример 2. Приведем к наименьшему общему знаменателю дроби Решение. Наименьшим общим кратным Чтобы привести дробь   к знаменателю 12, надо числитель и знаменатель этой Чтобы привести дроби к наименьшему общему знаменателю, надо:  1) найти наименьшее В более сложных случаях наименьший общий знаменатель и дополнительные множители находят с Поэтому Решение задач 264. Приведите дробь:   265. Выразите в минутах, а 267.    Сократите дроби Ответьте на вопросы: 1. Какое число называют дополнительным множителем?  2. Как Спасибо за внимание!
Слайды презентации

Слайд 1 Приведение дробей к общему знаменателю
Молодых Наталья

Приведение дробей к общему знаменателю Молодых Наталья АндреевнаУчитель математики средней школы Андреевна
Учитель математики средней школы № 3 г.Каменска- Уральского Свердловской области

Слайд 2 Умножим числитель и знаменатель дроби Умножим

Умножим числитель и знаменатель дроби Умножим числитель и знаменатель дроби числитель и знаменатель дроби на одно и то же число 2. Получим равную ей дробь , т. е. Говорят, что мы привели дробь к новому знаменателю 8. Дробь можно привести к любому знаменателю , кратному знаменателю данной дроби.

Слайд 3 Число, на которое надо умножить знаменатель

Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, дроби, чтобы получить новый знаменатель, называют дополнительным множителем. При приведении дроби к новому знаменателю ее числитель и знаменатель умножают на дополнительный множитель.

Слайд 4 Пример 1. Приведем дробь

Пример 1. Приведем дробь   к знаменателю 35. Решение. Число к знаменателю 35. Решение. Число 35 кратно 7, так как 35:7 = 5. Дополнительным множителем является число 5. Умножим числитель и знаменатель данной десятичные дроби на 5, получим

Слайд 5 Любые две дроби можно привести к

Любые две дроби можно привести к одному и тому же знаменателю, одному и тому же знаменателю, или иначе к общему знаменателю. Например, Общим знаменателем дробей может быть любое общее кратное их знаменателей (например, произведение знаменателей). Обычно дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Слайд 6 Пример 2. Приведем к наименьшему общему

Пример 2. Приведем к наименьшему общему знаменателю дроби Решение. Наименьшим общим знаменателю дроби Решение. Наименьшим общим кратным чисел 4 и 6 является 12. Чтобы привести дробь к знаменателю 12, надо умножить числитель и знаменатель этой дроби на дополнительный множитель 3 (12:4 = 3). Получим 

Слайд 7 Чтобы привести дробь  к знаменателю

Чтобы привести дробь   к знаменателю 12, надо числитель и знаменатель 12, надо числитель и знаменатель этой дроби умножить на дополнительный множитель  2 (12:6=2). Получим  Итак

Слайд 8 Чтобы привести дроби к наименьшему общему

Чтобы привести дроби к наименьшему общему знаменателю, надо:  1) найти знаменателю, надо: 1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем; 2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Слайд 9 В более сложных случаях наименьший общий

В более сложных случаях наименьший общий знаменатель и дополнительные множители находят знаменатель и дополнительные множители находят с помощью разложения на простые множители. Пример 3. Приведем дроби к наименьшему общему знаменателю. Решение. Разложим знаменатели данных дробей на простые множители: 60=2 • 2 • 3 • 5; 168 = 2 • 2 • 2 • 3 • 7. Найдем наименьший общий знаменатель: 2 • 2  • 2 • 3 • 5 • 7 = 840. Дополнительным множителем для дроби  является произведение 2 • 7, т. е. тех множителей, которые надо добавить к разложению числа 60, чтобы получить разложение общего знаменателя 840.

Слайд 10 Поэтому

Поэтому

Слайд 11 Решение задач 264. Приведите дробь:
265. Выразите

Решение задач 264. Приведите дробь:   265. Выразите в минутах, в минутах, а потом в шестидесятых долях часа:

266. Сколько содержится:


Слайд 12 267.    Сократите дроби

267.    Сократите дроби а потом приведите их к знаменателю 24.

268. Можно ли привести к знаменателю 36 дроби:

272.    Приведите к наименьшему общему знаменателю дроби:


Слайд 13 Ответьте на вопросы: 1. Какое число называют

Ответьте на вопросы: 1. Какое число называют дополнительным множителем?  2. дополнительным множителем? 2. Как найти дополнительный множитель? 3. Какое число может служить общим знаменателем двух дробей? 4. Как привести дроби к наименьшему общему знаменателю?

Слайд 14 Спасибо за внимание!

Спасибо за внимание!