

ACCESSING SOLUTIONS From Your Desktop

CAE Partner Business Unit

ACCESSING SOLUTIONS From Your Desktop

The MacNeal-Schwendler Corporation

Bob Gilliver MSC/ARIES European Product Marketing and Support Manager

ACCESSING SOLUTIONS From Your Desktop

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

ACCESSING SOLUTIONS From Your Desktop

Geometry

Full function ACIS based modeler

- **Constraints**
 - full
 - partial
 - none
- ACIS data exchange
 - AutoCAD
 - Bentley
 - Integraph
 - HP

ACCESSING SOLUTIONS From Your Desktop

ACCESSING SOLUTIONS From Your Desktop

ACCESSING SOLUTIONS From Your Desktop

Geometry

Complex solids

- Skin operator
- Sweep operator
- Extensive blending and chamfering
- **Region operator to sub-divide geometry**
 - Map meshing
 - Load footprint areas
 - Symmetry

MSC/ARIES Base - Assemblies

Visualization Packaging

Clearance

Interference

Mass properties

QUIT UNDO BACKUP HARDCOPY GRID AXIS VIEWPORT SETUP CALC I NEASURE INFO | HELP

ACCESSING SOLUTIONS From Your Desktop

MSC/ARIES Base - Mass Properties

-			En	tity inform	ation	.
Mass Properties of Selec	ted En	tities				
VOLUME	= 1.	16677e+0	007 mm^3			
DENSITY	= 7.	7504e-00	06 kg/(mm	n^3)		
MASS	= 96	.4297 kg	9			
WEIGHT	= 88	6.812 N				
SURFACE AREA	= 50	13505 mm'	^ 2			
MASS MOMENTS OF INERTIA	:					
IX	= 93	5469 kg+	*nn^2			
IY	= 2.	= 2.43862e+006 kg*mm^2				
IZ	= 3.	31991e+0	006 kg*mr	ı^2		
MASS PRODUCTS OF INERTIA	:					
IXY	= Ø	kg*nn^2				
IYZ	= Ø	kg*nn^2				
IZX	= Ø	kg*nn^2				
RADII OF GYRATION :						
к	= 1	01.709	164.216	191.605	5 mm	
CENTER OF GRAVITY	=	0	0	(0 mm	
PRINCIPAL AXES ORIENTATI	ON (DI	RECTION	COSINES)	:		
X-AXIS	=	1	0		3 mm/mm	
Y-AXIS	=	0	1	1	3 mm/mm	
Z-AXIS	=	0	0	1	1 nn/nn	
PRINCIPAL MASS MOMENTS O	F INER	TIA :				
IXP	= 93	5469 kg+	*mm^2			
IYP	= 2.43862e+006 kg*mm^2					
IZP	= 3.31991e+006 kg*mm^2					
PRINCIPAL RADII OF GYRAT	ION :					
КР	= 1	01.709	164.216	191.609	5 mm	-

ACCESSING SOLUTIONS From Your Desktop

ACCESSING SOLUTIONS From Your Desktop

ACCESSING SOLUTIONS From Your Desktop

ACCESSING SOLUTIONS From Your Desktop

Pre Release Solids Shelling

- □ Shelling of solids to thin walled solids
- Per face (uniform) thickness control
- □ Face exclusion to create "open" solids
- **Full Parametrics support**
- □ Not supported
 - Spline faces (fillet, sweep, skin, spline segments in curve based primitives, extrude with draft <arc segment>)

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - ACIS

- Support for ACIS sat (ASCII) and sab (binary) file formats
- Allows bi-directional exchange of solids, surface and wireframe
- Currently the most reliable solids data exchange format
- □ Transfers geometry only
 - No feature or history information

Geometry Interface - Autocad Import

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - Autocad Import

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - Autocad Import

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - Autocad Export

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - IGES Import

Supports

- Wireframe
 - Point, line, arc, composite curve, spline (112,126), conics (104), copious data (106)
- Surface
 - Untrimmed (118, 120, 122, 128)
 - Trimmed (144)
- Solid
 - Solid BREP (186, 514, 510, 508, 504, 502,)

Geometry Interface - IGES Export

Supports

- Wireframe
 - Point, line, arc, composite curve, spline (112,126), conics (104)
- Solid/surface
 - Decomposed to precise wireframe BREP
 - Decomposed to surface collection (trimmed or untrimmed 128, 142, 144)
- Text
- Hidden line removal
- Silhouette edge generation

Geometry Interface - DXF Import

□ Wireframe

- Point, line, arc, polyline
- □ Text

ACCESSING SOLUTIONS From Your Desktop

Geometry Interface - DXF Export

Supports

- Wireframe
 - Point, line, arc, composite curve, spline
- Solid/surface
 - Decomposed to precise wireframe BREP
- Text
- Hidden line removal
- Silhouette edge generation

ACCESSING SOLUTIONS From Your Desktop

Geometry Interfaces - STEP, VDAFS

DES/STEP AP203

- Import and export of solid/surface/wireframe data
- **VDAFS**
 - Import and export of surface/wireframe data
 - Data format that emphasizes surface transfer
 - Used predominantly by European automotive industry

Geometry Interfaces - Stereolithography

- **Translates solids into standard "stl" format**
- □ Rapid manufacture for physical part prototyping

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

ACCESSING SOLUTIONS From Your Desktop

LBC's applied to geometry or to nodes & elements

Supported loads

- Force, moment, pressure
- Gravity
- Velocity
 - Translational
 - Rotational
- Acceleration
 - Translational

ACCESSING SOLUTIONS From Your Desktop

QUIT BACKUP HCOPY GRID AXIS VIEWPORT VISUALS SETUP CALC MEASURE INFO HELP

PARTNER

ACCESSING SOLUTIONS From Your Desktop

A Business Unit of The MacNeal-Schwendler Corporation

Constant or functional

Geometry based load and

survive geometry change

varying magnitude

boundary conditions

Direction control for load/boundary conditions

- XYZ
- Radial
- Tangential

ACCESSING SOLUTIONS From Your Desktop

Load case combination

(5 * load_1) + (3 * load_2)

ACCESSING SOLUTIONS From Your Desktop

FE Meshing

• Automeshing technology

- Edges -- 1D elements (beam, gap, rigid, spring)
- Surfaces -- quad dominant or all trias
- Volumes -- tets only
- Map meshing for surfaces and volumes
 - 3/4 side surfaces, 5/6 face volumes
 - Composite edge support

ACCESSING SOLUTIONS From Your Desktop

□ Adaptive mesh refinement

- Automatic mesh refinement to optimize mesh density
- Use with automatically generated h or p meshes
- Global or local refinement
- New mesh density based on current error versus target error
- **Reduces mesh density related errors**

Prompt:Select a FER command.

QUIT BACKUP HCOPY GRID AXIS VIEWPORT VISUALS SETUP CALC MEASURE INFO HELP

QUIT BACKUP HCOPY GRID AXIS VIEWPORT VISUALS SETUP CALC MEASURE INFO HELP
FE Meshing

 Direct creation of nodes/elements Extrude/revolve 1D to 2D, 2D to 3D 	 Mirror Mesh editing
 Element quality checks Merge node 	 Auto MPC connection of meshes between linear or quad tets to linear hex

ACCESSING SOLUTIONS From Your Desktop

Results Review

- Display options
 - Vector
 - Contour
 - Graph
 - Animation
 - Cutting plane
- Results in any coordinate system
- Data averaging control
- Results combination
- Error calculation

ACCESSING SOLUTIONS From Your Desktop

Linear Statics

- □ Loads constant with time
- Material assumed linear and perfectly elastic
- Results calculated
 - Stress
 - Displacement
 - Strain
 - Strain energy
 - Reaction force

Normal Modes

- Calculates undamped natural modes of vibration
- Material assumed linear and perfectly elastic
- Results calculated (normalized)
 - Stress
 - Displacement
 - Strain
 - Strain energy
 - Reaction force

Linear Buckling

- □ Calculates load factor for critical buckling
- Material assumed linear and perfectly elastic
- Results calculated
 - Stress
 - Displacement
 - Strain
 - Strain energy
 - Reaction force

Non-Linear Statics

□ Geometric non-linearity

- Change in stiffness associated with large deformations
- Load follows deformed shape
- □ Material non-linearity
 - Bi-linear elastic/plastic with plastic strain, or
 - Non-linear elastic, no plastic strain
 - Compressive/tensile stress-strain curves can be different

Linear Transient Dynamics

- Time varying geometry and finite element loads
- Structural and modal damping
- Results calculated for each time step
 - Stress
 - Displacement
 - Strain
 - Velocity
 - Acceleration
 - Reaction force

Heat Transfer

- Steady state and transient linear and non-linear heat transfer
- Heat transfer modes
 - Conduction
 - Free convection
 - Forced convection
 - Radiation
- Temperature and time dependent
 - Heat flux
 - Mass flow rate

Heat Transfer

ACCESSING SOLUTIONS From Your Desktop

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

Optimization

An Automated Process That:

• Satisfies Your <u>Design Objective</u>

• Within Design Constraint(s)

• By Modifying <u>Design Variables</u>

ACCESSING SOLUTIONS From Your Desktop

Optimization - Overview

- □ 1 Design Objective
 - minimize/maximize weight, frequency, load factor
- 'n' Design Constraints local and or global
 - min/max stress, displacement, freq, load factor
- in' Design Variables
 - Dimensional variables
 - Element shell thickness, Non Structural Mass
- □ Solve multiple constraints simultaneously
 - Linear statics (with multiple load cases)
 - Modal (per mode shape max/min control)
 - Buckling analysis

Optimization - Overview

□ Shape

- Geometry dimensions as design variables
- □ Sizing (element properties)
 - Shell thickness, non-structural mass
- **Design sensitivity**
 - Effect of a change in a design variable on
 - Design Objective, Design Constraint(s)
- □ Shape and sizing can be combined

Optimization - Application

- **Build solid or surface geometry**
- □ Associate dimension variables in Parametrics:
 - Use as design variables for Optimization
 - Maintain design intent
- □ (Parameterize using DRP)
 - Maintain design intent
- Attach DRP model(s) to solids in Parametrics)

ACCESSING SOLUTIONS From Your Desktop

Optimization - Application

- **Create finite element model**
- Select Optimization application
 - 1 Design Objective minimize/maximize:
 - weight, frequency, load_factor
 - 'n' Design Constraints local and/or global min/max stress, disp, freq, load factor
 - 'n' Design Variables
 - Dimensional,
 - Shell thickness, Non Structural Mass

Selecting Design Variables

ACCESSING SOLUTIONS From Your Desktop

Optimization - Results Review

Post process in Optimization application

- Graph design objective/ constraint(s)/ variable(s) against design cycle
- Display geometry at intermediate design cycles
- **Review results of final design in FE_Results**
 - Standard results review process
 - Animate between FEmodels across design cycles

P-Elements - Overview

- Automatically increases element's shape function polynomial order during solution until convergence
- Convergence based on per element strain energy difference between
 p-order changes

Mesh remains unchanged

P-Elements - Overview

Each edge of each element has its p-order independently controlled in MSC/NASTRAN

ACCESSING SOLUTIONS From Your Desktop

P-Elements - Application

- Supported element types
 - Tetrahedron
 - Brick
 - Pentahedron (wedge)
- p-order min/max control
 - Recommended p-order range 3-10
- Adaptivity automatically turns off below specified von Mises stress or strain minimum
 - Turns off adaptivity for elements where stress and or strain is negligible
 - Reduces CPU time and system resources

Use p-elements in areas where high accuracy required, h-elements elsewhere

ACCESSING SOLUTIONS From Your Desktop

P-Elements - Results Review

- p-element results review identical to h-elements
- □ Can display final p element order contours

ACCESSING SOLUTIONS From Your Desktop

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

Mechanisms

- Two- and three-dimensional mechanism modeling analysis and results review
- Uses MDI/ADAMS Kinematics solver
- Solves motion of fully constrained (0 DOF) kinematic systems i.e. the motion of the system is completely constrained by applied motion(s) and joint constraints

Mechanisms Pre Processing

- Create link geometry
- Geometry can be solid, surface or wireframe
- Add joints (supports all MDI/ADAMS joints)
- Add constant, harmonic, step, random motion
- Add motion constraints (e.g. cams), applied forces, springs, gravity

• Solve

ACCESSING SOLUTIONS From Your Desktop

Mechanisms Results Review

- Animated motion of links
- □ Motion path of any point
- **Joint reaction force/moment**
- Rotational/translational link displacement, velocity, acceleration
- **Clearance/interference between links**
- Results interrogation in local static/dynamic coordinate system

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

Plastics

- **3D** mold fill analysis
- Uses Moldflow/Flowcheck solver
- □ Solves "Will It Fill"
 - Fast analysis to calculate areas of fill / no-fill / possible fill
 - Experiment with number of injection points/ location, material and part thickness
- □ Solves "Fill_Pattern"
 - Fill time
 - Air trap location
 - Weld line locations

Plastics

ACCESSING SOLUTIONS From Your Desktop

Plastics

ACCESSING SOLUTIONS From Your Desktop

Modular Configuration

	NETWORK LICENSING	GEOMETRY INTERFACE - MENTOR BOARDSTATION	GEOMETRY INTERFACE - STEREOLITHOGRAPHY	GEOMETRY INTERFACE - CATIA	GEOMETRY INTERFACE - VDAFS	GEOMETRY INTERFACE - STEP AP203	GEOMETRY INTERFACE - IGES	PLASTICS	MECHANISMS	HEAT TRANSFER	STRUCTURES - 2	STRUCTURES - 1	OPTIONAL MODULES
--	-------------------	---	---	----------------------------	----------------------------	---------------------------------	---------------------------	----------	------------	---------------	----------------	----------------	------------------

MSC/ARIES BASE

OPTIONAL MODULES MSC/NASTRAN-DESIGNER	LINEAR TRANSIENT	NON-LINEAR STATICS	HEAT TRANSFER	OPTIMIZATION	MECHANISMS	PLASTICS	GEOMETRY INTERFACE - STEP AP203	GEOMETRY INTERFACE - VDAFS	GEOMETRY INTERFACE - CATIA	GEOMETRY INTERFACE - STEREOLITHOGRAPHY	GEOMETRY INTERFACE - MENTOR BOARDSTATION	NETWORK LICENSING	OPTIONAL MODULES
O wso		NON	HEA	ОРТ		LA PLA	OU OU OU OU	U U U U U	O B C C	O U U U	GEO	NET	0

MSC/ARIES Base

MODULE

DESCRIPTION

Geometry	ACIS Based solid, surface, wireframe part and assembly modeling
Parametrics	Parameterization of solids and surfaces
Design Rule Processor	Linear and non-linear equation solver. Solid and surface feature relationships
Mass Properties	Mass properties of parts and assemblies
Materials	Structural and thermal material properties manager
Markup	Part and assembly annotation
Geometry Interface - ACIS	Import and export of solid, surface, wireframe via ACIS sat and sab format
Geometry Interface - MSC/PATRAN	Export of solid, surface, wireframe via PATRAN Express format
Geometry Interface - DXF	Export of solid, surface, wireframe via DXF format
HPGL Plot Driver	HPGL pen plotter driver
Printer Drivers	Printer drivers and tiff, gif, ppm, epsf, raster formats
Graphics Accelerators	Hardware graphics accelerators - Sun Solaris, SGI, HP, IBM
FE Modeler	FE pre and post
FEM Preference - MSC/NASTRAN	MSC/NASTRAN preference for all Structures-1 and Structures-2 analysis types
FEM Preference - MSC/PATRAN	MSC/PATRAN preference for Lin. Statics and Normal Modes. PATRAN neutral format

ACCESSING SOLUTIONS From Your Desktop

Optional Modules

MODULE	
--------	--

DESCRIPTION

Structures-1	Integrated MSC/NASTRAN solver:
	Lin. Statics, Normal Modes, Lin. Buckling, Optimization
	Unlimited Model Size, Interlock Check=ON
Structures-2	Integrated MSC/NASTRAN solver:
	Nonlinear Statics, Lin. Transient Dynamics,
	Unlimited Model Size, Interlock Check=ON
Heat Transfer	Integrated MSC/NASTRAN solver:
	Heat Transfer,
	Unlimited Model Size, Interlock Check=ON
Mechanisms	Mechanism Modeler (i.e. Pre and Post),
	Integrated MDI ADAMS Kinematics solver
Plastics	Integrated Moldflow FLOWCHECK solver:
	Will It Fill, Fill Pattern
Geometry Interface - IGES	Import and export solid, surface, wireframe via IGES standard
Geometry Interface - STEP AP203 (pre-released	Import and export solid, surface and wireframe via STEP AP203, Part 42 standard
Geometry Interface - VDAFS (pre-release)	Import and export surface, wireframe via VDAFS standard
Geometry Interface - CATIA	Import surface, wireframe via CATIA Export format
Geometry Interface - Stereolithography	Export solid, surface via stl format
Geometry Interface - Mentor BoardStation	Import and export Mentor BoardStation PCB's via IDF format
Network Licensing	Floating network license for MSC/ARIES Base and all optional modules

Platform Support

Platform Requirements - WinNT

- □ Intel based (not Digital NT)
 - Recommend >= Pentium 75MHz, 32Mb RAM
 - 125 Mb swap space
 - Any Microsoft supported graphics adapter in 256 color mode
 - WindowsNT
 - Windows 3.1 and Windows95 *not available*

□ Licensing

- Node-lock, standalone only
- <u>No network license support</u>
- Requires Ethernet adapter for licensing

Platform Requirements - Unix

Supported Unix workstation

- 32Mb RAM
- 125 Mb swap space

□ Licensing

- Node-lock, and
- Floating network license

ACCESSING SOLUTIONS From Your Desktop

- Geometry
- FE Analysis
- Optimization

- Mechanisms
- Plastics
- MSC/ARIES Positioning

MSC/ARIES Positioning

Standalone Design and Analysis
System

• Designed and analyzed in MSC/ARIES

Analysis of ACIS Based Geometry

- Design built in CAD system
- Design geometry import into MSC/ARIES
- Analyzed in MSC/ARIES
- Focus on Ease-of-Use and Automation For...

MSC/ARIES Positioning

Structural

Thermal

Mechanisms

Plastic Molding Analysis

ACCESSING SOLUTIONS From Your Desktop

Positioning of MSC/ARIES

FEA Analyst

Positioning of MSC/ARIES MSC/ARIES MSC/N4W Non-FE Specialist FE Knowledgeable Geometry Based Analysis GUI Nastran pre & Conceptual CAE Tool & Limited Geometry (Modeller Relies on Geometry ACIS imported analysis Windows Look & F Designer Low-High End FE

Positioning of MSC/ARIES

Guide line thought / Question Process

ACCESSING SOLUTIO

Mentor BoardStation Interface

ACCESSING SOLUTIONS From Your Desktop

Mentor BoardStation Interface

ACCESSING SOLUTIONS From Your Desktop

