Предикаты

Определение 1

- а) Множество $P \subseteq A_1 \times A_2 \times ... \times A_n$ называется *п-местным предикатом (отношением)* между элементами множеств $A_1, A_2, ..., A_n$;
- б) Если $(a_1,a_2,...,a_n) \in P$, то мы говорим, что отношение P истинно на наборе $(a_1,a_2,...a_n)$ и обозначаем P $(a_1,a_2,...a_n)=1$ или просто $P(a_1,a_2,...a_n)$, если же $(a_1,a_2,...,a_n) \notin P$, то мы говорим, что P ложно на наборе $(a_1,a_2,...a_n)$ и пишем $P(a_1,a_2,...a_n)=0$ или $(a_1,a_2,...a_n)$.

Определение 2

Пусть $P \subseteq A_1 \times A_2 \times ... \times A_n - n$ -местный предикат.

а) При n=1 $P \subseteq A_1$ называется одноместным предикатом или свойством, определенным на множестве A_1 ;

- б) при n=2 P называется двухместным предикатом или бинарным предикатом или просто отношением;
- в) если $P \subseteq A^2$, то P называется *отношением между* элементами множества A.

Примеры

- 1) Пусть $A_1 = Z$. Свойство $P(x) \subseteq Z$ определяется условием: $P(x) = 1 \longleftrightarrow x$ четное число, тогда $P = \{...; -4; -2; 0; 2; 4; ...\}$.
- 2) $A_1 = R$, $P \subseteq R$, определяется условием: $P(x) = 1 \leftrightarrow x$ иррациональное число. Тогда $P(\sqrt{2}) = P(e) = P(\pi) = 1$, а $P(0) = P(1) = P(-\frac{1}{3}) = 0$
- 3) A_1 множество всех людей, $P(x) \subseteq A_1$ определим так: $P(x) = 1 \longleftrightarrow x \quad -\text{мужчина}$

4) A_1 множество треугольников на плоскости, $P(x) = 1 \leftrightarrow x$ равносторонний треугольник

Определение 3

Пусть – $P \subseteq A \times B$ бинарный предикат. Тогда предикат называется *обратным* к P, если для любых $x \in A$ и

$$y \in B$$

$$P(x,y) = 1 \leftrightarrow P_{Oo}^{-1}(y_H x_H)_{H\overline{M}} \text{ 4-ерез}$$

следующий бинарный дреджидт:

 I_{A} называется диргональным отношением равенства или просто равенством на множестве A.

Очевидно, что

$$I_A^{-1} = I_A$$

Определение 4

Пусть $P \subseteq A \times B$, $Q \subseteq B \times C$ бинарные предикаты, тогда предикат $P \circ Q \subseteq A \times C$ определяется следующим условием: для любых $x \in A$, $z \in C$ $(P \circ Q)(x,z) = 1 \leftrightarrow$ существует $y \in B$, такой, что

$$P(x,y) = 1 \land Q(y,z) = 1$$

 $P \circ O$ называется суперпозицией предикатов P и Q.

Пример 1

$$A = \{1,2,3\}, B = \{a, b, c\}, C = \{x, y, z\};$$

$$P = \{(1;a); (1;c); (2;b); (2;c); (3;a)\} \subseteq A \times B;$$

$$Q = \{(a; x); (a; y); (b; y); (b; z); (c; x); (c; z)\} \subseteq B \times C;$$

$$P \circ Q = \{(1;x); (1;y); (1;z); (2;x); (2;y); (2;z); (3;x); (3;y)\} = \{(A \times C)/\{(3;z)\}.$$

Теорема 1

Пусть $P \subseteq A \times B$, тогда

- a) $I_A \circ P = P$;
- $6) POI_{R} = P ...$

Доказательство

а) Возьмем $(x;y) \in I_A$ оP существует $Z \in A$ $(x;z) \in I_A \land (z;y) \in P$. Но $(x;z) \in I_A$ влечет X=Z , значит $(x;y) \in P$, то есть I_A о $P \subseteq P$. Теперь возьмем $(x;y) \in P$, то есть существует такое $Z \in A(Z=X)$, что $(x;z) \in I_A \land (z;y) \in P$, значит $(x;y) \in I_A \land (z;y) \in P$, значит $(x;y) \in I_A \land (z;y) \in P$,

Аналогично доказывается пункт б).

Теорема 2

Пусть
$$P \subseteq A \times B$$
 и $Q \subseteq B \times C$, тогда $\left(P \circ Q \right)^{-1} = Q^{-1} \circ P^{-1}$ Доказательство

Возьмем

$$(z;x) \in (P \circ Q)^{-1} \longleftrightarrow (x;z) \in P \circ Q \iff$$

существует $y \in B$, такой, что

$$(x;y) \in P \land (y;z) \in Q \leftrightarrow$$

$$\leftrightarrow (y;x) \in P^{-1} \land (z;y) \in Q^{-1} \leftrightarrow (z;x) \in Q^{-1} \circ P^{-1}$$
Teopema 3

Пусть
$$P \subseteq A \times B$$
, $Q \subseteq B \times C$, $R \subseteq C \times D$, — ассоциативность суперпозиции. $(P \circ Q) \circ R = P \circ (Q \circ R)$