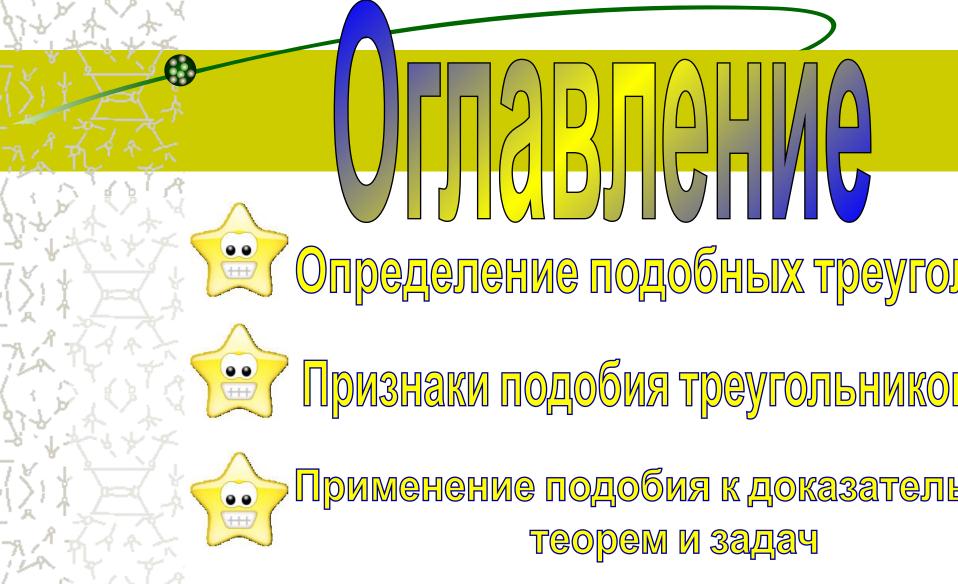
Подобные треуголь

Приготовили ученицы Исламова Вероника Платова Валерия, Хамидуллина Алина Козлова Екатерина, Сепезнева Елена.



Соотнашение между сторонами и прямоугольного треугольни

Определение подобных треугол

- □ 1.1. Пропорциональные отрезки.
- □ 1.2. Определение подобных треугольников
- □ 1.3. Отношение площадей подобных треугольников.
- <u> 1.4. Свойства подобия.</u>

1.1 Пропорциональные отрезки.

Отношением отрезков АВ и СФ называется отношение их длин, т. е.

$$\frac{AB}{CD}$$

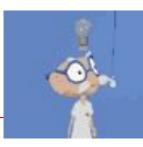
Говорят, что отрезки \mathcal{AB} и \mathcal{CD} пропорциональны отрезкам $\mathcal{A}_{1}\mathcal{B}_{1}$ и $\mathcal{C}_{1}\mathcal{D}_{1}$, если

$$\frac{AB}{A_1B_1} = \frac{CD}{C_1D_1}$$

ПРИМЕР № 1.

Отрезки \mathcal{AB} и \mathcal{CD} , длины которых равны 2 см и 1см, пропорциональны отрезкам $\mathcal{A}_1\mathcal{B}_1$ и $\mathcal{C}_1\mathcal{D}_2$ отрезки которых равны 3см и 1,5см. В самом деле,

$$\frac{AB}{A_1B_1} = \frac{CD}{C_1D_1} = \frac{2}{3}$$



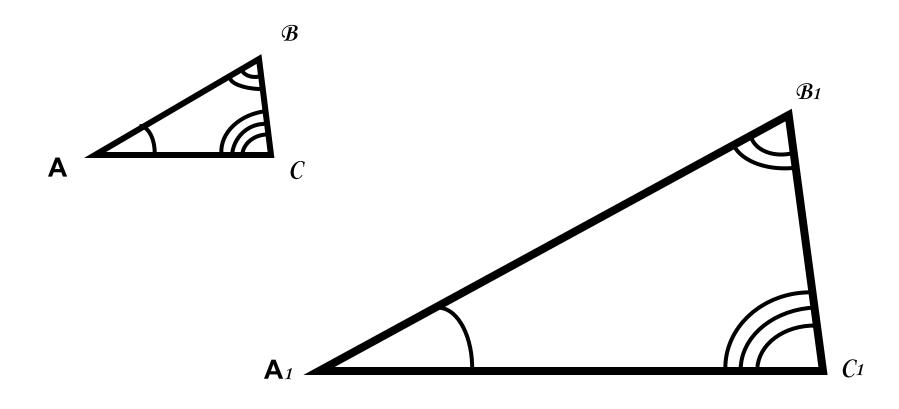
В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например футбольный и теннисный мячи, круглая тарелка и большое круглое блюдо. В геометрии фигуры одинаковой формы принято называть подобными. Так, подобными являются любые два квадрата, любые два круга. Введем понятие подобных треугольников.

ПОДОБИЕ, геометрическое понятие, характеризующее наличие одинаковой формы у геометрических фигур, независимо от их размеров. Две фигуры $\mathcal{F}1$ и $\mathcal{F}2$ называются подобными, если между их точками можно установить взаимно однозначное соответствие, при котором отношение расстояний между любыми парами соответствующих точек фигур $\mathcal{F}1$ и $\mathcal{F}2$ равно одной и той же постоянной \mathcal{K} , называемой коэффициентом подобия. Углы между соответствующими линиями подобных фигур равны.

Подобные фигуры F1 и F2.

□Задача**№***1*.

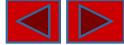
Пусть у двух треугольников $\mathcal{ABCUA}_{1}^{\mathcal{B}_{1}C_{1}}$ соответственно рав⁄шы: $\mathcal{LA} = \mathcal{LA}_{1}$, $\mathcal{B} \equiv \mathcal{B}_{1}$, $\mathcal{C} = \mathcal{LC}_{1}$. В этом случае стороны $\mathcal{ABUA}_{1}^{\mathcal{B}_{1}}$, $\mathcal{BCUB}_{1}^{\mathcal{B}_{1}}$, $\mathcal{CAU}_{1}^{\mathcal{B}_{1}}$ называются сходными.



Определение. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Другими словами, два треугольника подобны если их можно обозначить буквами
$$\mathcal{ABC}$$
 и $\mathcal{A}_{_{1}}\mathcal{B}_{_{1}}\mathcal{C}_{_{1}}$ так, что $\mathcal{A}=\mathcal{A}_{_{1}}$, $\mathcal{B}=\mathcal{B}_{_{1}}$ $\mathcal{B}=\mathcal{B}_{_{1}}$ $\mathcal{B}=\mathcal{B}_{_{1}}$ $\mathcal{B}=\mathcal{B}_{_{1}}$ $\mathcal{B}=\mathcal{B}_{_{1}}$

Число *k*, равное отношению сходственных сторон треугольников, называется коэффициентом подобия.



Подобие треугольников АВС и А1В1С1 обозначается так :

$$\triangle ABC \propto \triangle A_1B_1C_1$$

Нажмите сюда и увидите подобные треугольники

1.3. Отношение площадей подобных треугольников.

Теорема. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Пусть треугольники \mathcal{ABC} и $\mathcal{A1B1C1}$ подобны и коэффициент подобия равен \mathcal{L} Обозначим буквами \mathcal{L} и \mathcal{L} площади этих треугольников. Так как

$$\stackrel{\mathcal{A}=}{\overset{\mathcal{A}1, \text{ TOS}}{S_1}} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}$$

1.3. Отношение площадей подобных треугольников.

По формулам имеем:

$$\frac{AB}{A_1B_1} = k, \frac{AC}{A_1C_1} = k$$

поэтому

$$\frac{S}{S_1} = k^2$$

Теорема доказана.

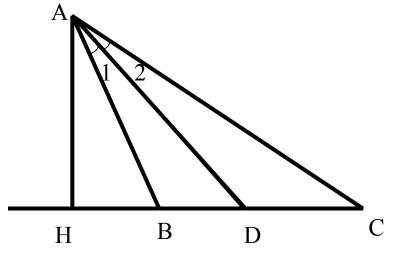
Свойства подобия.

Задача №2.

Докажите, что биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Решение.

Пусть AD – биссектриса треугольника ABC. Докажем, что



Треугольники
$$\mathcal{ABD}$$
 и \mathcal{ACD} имеют — $\frac{BD}{DC}$ общую высоту \mathcal{AH} , поэтому $_{ACD}$

Свойства подобия.

С другой стороны, эти же треугольники имеют по равьюму услу ($\mathcal{A} = \mathcal{A}_1$), поэтому

$$\frac{SABD}{SACD} = \frac{AB \cdot AD}{AC \cdot AD} = \frac{AB}{AC}$$

Из двух равенств для отношений площадей получаем

$$\frac{BD}{DC} = \frac{AB}{AC}$$
 $\frac{BD}{AB} = \frac{DC}{AC}$

Что и требовалось доказать.

Признаки подобия треугольк



Первый признак

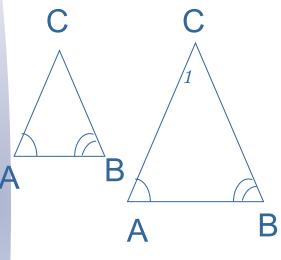
Второй признак

Третий признак

Первый призна

Теорема: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Первый призна



Дано АВС А АВС

 $\angle A = \angle A_1$

 $\angle B = \angle B_1$

Доказаты: ABG

Доказательство:

По теореме о сумме углов: $C = 480^{\circ} \angle A \angle B$, а $C_{1} = 480^{\circ} \angle A - A_{1} - B_{1}$; значит $C = C_{1}$

Tak kak $\angle A = \angle A_1^T$ $u \angle C \neq C_1$, $To \frac{S_{ABC}}{S_{A_1B_1C_1}} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}$ $u S_{A_1B_1C_1} = \frac{AC \cdot CB}{A_1C_1 \cdot C_1B_1}$

От этого следует $\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1}$

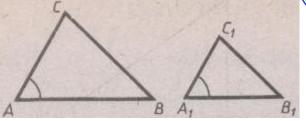
Получается, что сходственные стороны

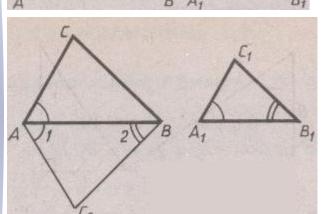
Теорема. Если две стороны одного треугольника

пропорциональны двум стороны одного треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.



ДаноД АВС и





$\frac{AB}{A_1B_1} \frac{BAC}{\overline{I}}_{A_1C_1} \qquad \angle A = \angle A_1$

$\mathbf{\Lambda}$ - $\triangle ABC \triangle \triangle$ Токазательство:

Рассмотрим АВС, у KØTOPOJO $\angle 2 = \angle B_1$

 $\triangle \mathsf{ABC}$ $\triangle \mathsf{A}_1 \mathsf{B}_1 \mathsf{C}_1 \mathsf{C}_1$, с другой стороны $=\frac{AC}{A_1C_1}$,из этих равенств получается $AC = =AC_2$. $ABC = ABC_2$ -по двум сторонам и углу между ними (ДВнобщая дтородна,

$$\angle 2 = I \cdot \cancel{\mathbb{E}} B$$

$$\angle 2 = \angle B_1$$

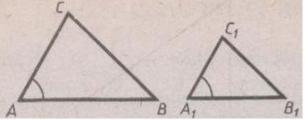
$$\angle B = \angle B_1$$

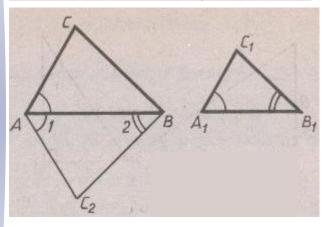
Теорема: Если три стороны одного

Теорема: Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобные.

$$\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1} = k \implies \triangle ABC \triangle ABC \triangle$$
A1B1C1

Toethu npushai





Дано∴ АВС №

$$\frac{ABA}{A_1B_1} = 1 \frac{BCC}{B_1C_1} = \frac{AC}{A_1C_1} = k$$

Д-ть: \triangle ABC \triangle \triangle

Доказательство:

Рассмотрим ABC_2 , у \cancel{KO} Г \cancel{DO} Г \cancel{O} $\angle 2 = \angle B_1$

 $\triangle ABC_2 \triangle A_1B_1C_1$ (по первому признаку), $\frac{AB}{A_1B_1} = \frac{BC_2}{B_1C_1} = \frac{AC_2}{A_1C_1} = k$

$$\frac{AB + ABC}{A_1B_1} = \frac{AC}{B_1C_1} = \frac{AC}{A_1C_1} = k \quad \text{M} \quad \frac{AB}{A_1B_1} = \frac{BC_2}{B_1C_1} = \frac{AC_2}{A_1C_1} = k \quad \Longrightarrow \triangle ABC = \triangle ABC_2$$

значи $\angle A = \angle 1$, а так как $\angle 1 = \angle A_1$, то $\angle A = \angle A_1$

Вначи △АВС ∞ △

Применение подобия к доказательству теорем и задач

Средняя линия треугольника

Медианы в треугольнике

Высота в треугольнике **Среднее пропорциональное**

Следствие 1

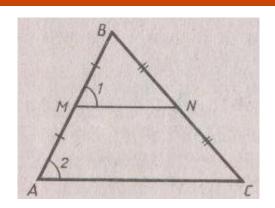
Следствие 2

Средняя линия треугольника

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

Теорема: Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Средняя линия треугольника



Даноь ABC $M\mathcal{N}$ — средняя линия Доказать: $M\mathcal{N}$ //AC и $M\mathcal{N}$ =1/2 \mathcal{A} C

Доказательство:

 \triangle ВМ \mathcal{N} и \triangle ВАС – подобны, так как

- *1)* ∠В общий
- 2) $\mathcal{BM}:BA=B\mathcal{N}:\mathcal{B}C=1:2$

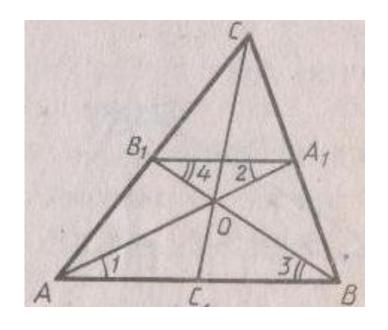
Значит \leq В $MN =\leq BAC$ и MN/AC = 1/2

To MN//AC u $MN = \frac{1}{2}$

Теорема доказана.

Медианы в треугольнике

Меридианы треугольника пересекаются в одной точке, которая делит каждую меридиану в отношении 2:1, считая от вершины.



Дано: △ ABC т.О – пересечение медиан

$$BB_{1} = AA_{1} = O$$

$$AA_{1} = O$$

$$AA_{2} = OB_{1} = OB_{2}$$

Медианы в треугольнике

Доказательство:

Аналогично доказывается, что точка О – пересечение медиан ${\sf BB}_1$ и ${\sf CC}_1$ делит каждую из них в отношении 2:1, считая от вершины.

Значит точка О – пересечения медиан AA_{1} , BB_{1} и CC_{1} делит их в отношении 2:1, считая от вершины.

Высота в треугольнике

Высота прямоугольного треугольника, проведенная из вершины прямого угла, разделяет треугольник на два подобных треугольника, каждый из которых прямоботь сн – высота

Доказать Δ AB \mathbb{C}_{\triangle} ACH Δ ABC \mathbb{C}_{\triangle} CBH Δ ACH \mathbb{C}_{\triangle} CBH

Высота в треугольнике

```
Доказательство:
```

```
△ АВС АСН (по двум углам: А-как общий и
```

```
\triangle прямым),
```

```
ABC ВСН (по двум углам: В-общий и прямыми),
```

Рассмотрим АСН и ВСН – прямоугольные

- 1) угол АНС = углу СНВ прямые углы
- (2) угол $\overline{A} =$ углу \overline{BCH}

Значит АСН ВСН.

Среднее пропорциональное

Отрезок Х У называется средним пропорциональным (или средним геометрическим) между отрезками АВ и СД, если

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой **Данко** фВС – прямоугольный

Доказать
$$CH = \sqrt{AH \cdot HB}$$

Доказательство:
$$_{\triangle}$$
 AHC $_{\triangle}$ CBH, поэтом $_{CH}^{AH} = \frac{CH}{HB}$

Следовательно

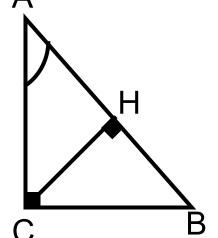
$$CH^2 = AH_{CH}B = \sqrt{AH \cdot HB}$$

Значит

Следствие 2

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.

Дано АВС –



Дано АВС – прямоугольный

$$CH$$
 – высоло $=\sqrt{AB\cdot AH}$

Доказательство:

∆ АВС ⇔ ∆ АСН (по двум углам),

Значи
$$AC = \sqrt{AB \cdot AH}$$

T

Соотнашение между сторонами и углам прямоугольного треугольника

Значение синуса, косинуса

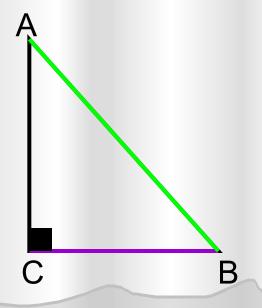
и тангенса для углов 30, 45

Основные тригонометрич

тождества.

C/IHVC

Синус острого угла прямоугольного треугольника – это отношение противолежащего катета к гипотенузе.

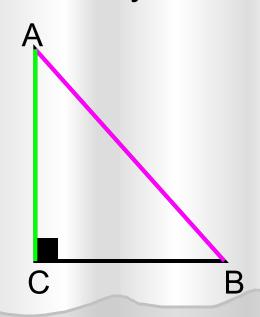


$$\sin A = \frac{BC}{AB}$$

KOCNHVC

Косинус острого угла прямоугольного треугольника –

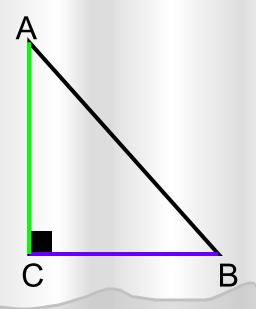
это отношение прилежащего катета к гипотенузе.



$$\cos A = \frac{AC}{AB}$$

Tahrehc

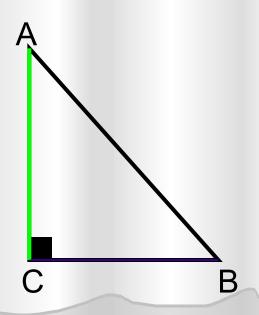
Тангенс острого угла прямоугольного треугольника – это отношение противолежащего катета к прилежащему катету.



$$tgA = \frac{BC}{AC} = \frac{\sin A}{\cos A}$$

KOTAHCHC

Тангенс острого угла прямоугольного треугольника – это отношение прилежащего катета к противолежащему катету.



$$ctgA = \frac{AC}{BC}$$

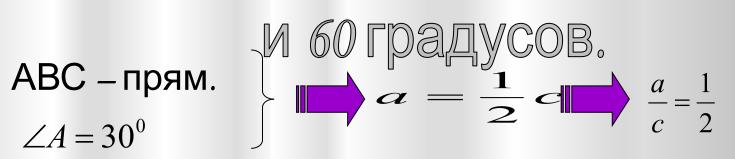
Основные тригонометрические

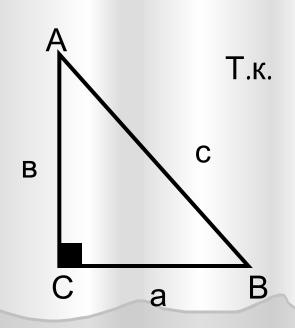
 $\sin^2 A + \cos^2 A = 1$



Значение синуса, косинуса и тангенса для углов 30, 45

$$\angle A = 30^{0}$$

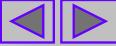




T.K.
$$\frac{a}{c} = \sin A$$

$$\angle A = 30^{\circ}$$

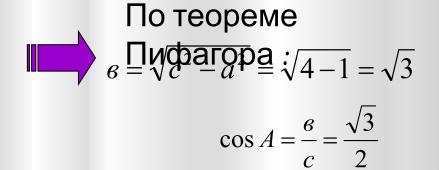
$$\sin 30^{\circ} = \frac{1}{2}$$



Значение синуса, косинуса и тангенса для углов 30, 45

$$\angle A = 30^{\circ}$$





$$\cos 30^0 = \frac{\sqrt{3}}{2}$$

Значение синуса, косинуса и тангенса для углов 30, 45

$$\sin 30^0 = \frac{a}{c} = \cos 60^0$$

$$\sin 30^0 = \frac{1}{2} = \cos 60^0$$

$$= \frac{a}{c} = \cos 60^{\circ}$$

$$= \frac{a}{c} = \cos 60^{\circ}$$

$$\cos 30^{\circ} = \frac{6}{c} = \sin 60^{\circ}$$

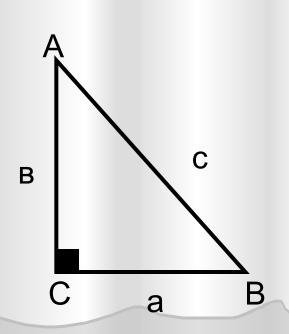
$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} = \sin 60^{\circ}$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \cos 45^{\circ}$$

$$tg30^{0} = \frac{a}{b} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = ctg60^{0}$$

$$tg60^{\circ} = \frac{b}{a} = \frac{\sqrt{3}}{1} = \sqrt{3} = ctg30^{\circ}$$

Значение синуса, косинуса и тангенса для углов 30, 45 и 60 градусов.



а	<i>30</i> ⁰	45 ⁰	60^{0}
sin a	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos a	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
tg a	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
ctg a	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$

