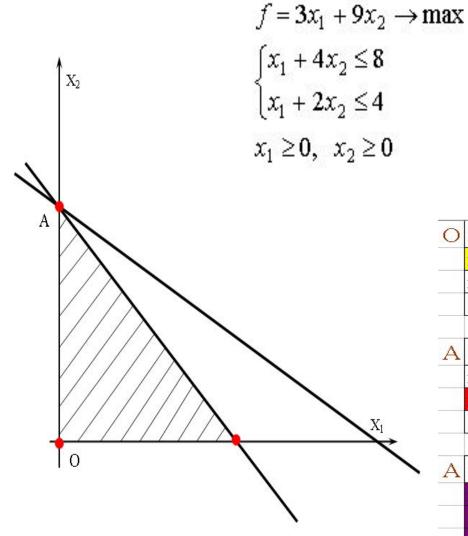
ОСОБЫЕ СЛУЧАИ ПРИМЕНЕНИЯ СИМПЛЕКС-МЕТОДА

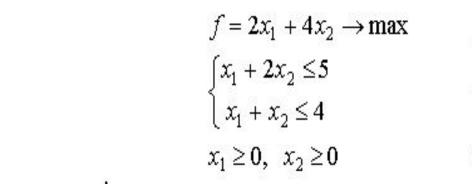
Вырожденность решения



$f = 3x_1 + 9x_2 + 0x_3 + 0x_4 \to \max$
$\int x_1 + 4x_2 + x_3 = 8$
$\int x_1 + 2x_2 + x_4 = 4$
$x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$

O	БП	xl	x2	x3	x4	Решение	
	x3	1	4	1	0	8	2
	x4	1	2	0	1	4	2
	f	-3	-9	0	0	0	
A	БП	x1	x2	x3	x4	Решение	
	x2	0,25	1	0,25	0	2	8
	x4	0,5	0	-0,5	1	0	0
	f	-0,75	0	2,25	0	18	
A	БП	x1	x2	x3	x4	Решение	
	x2	0	1	0,5	-0,5	2	
	x1	1	0	-1	2	0	
	f	0	0	1,5	1,5	18	

II Альтернативные оптимальные



$$f = 2x_1 + 4x_2 + 0x_3 + 0x_4 \rightarrow \max$$

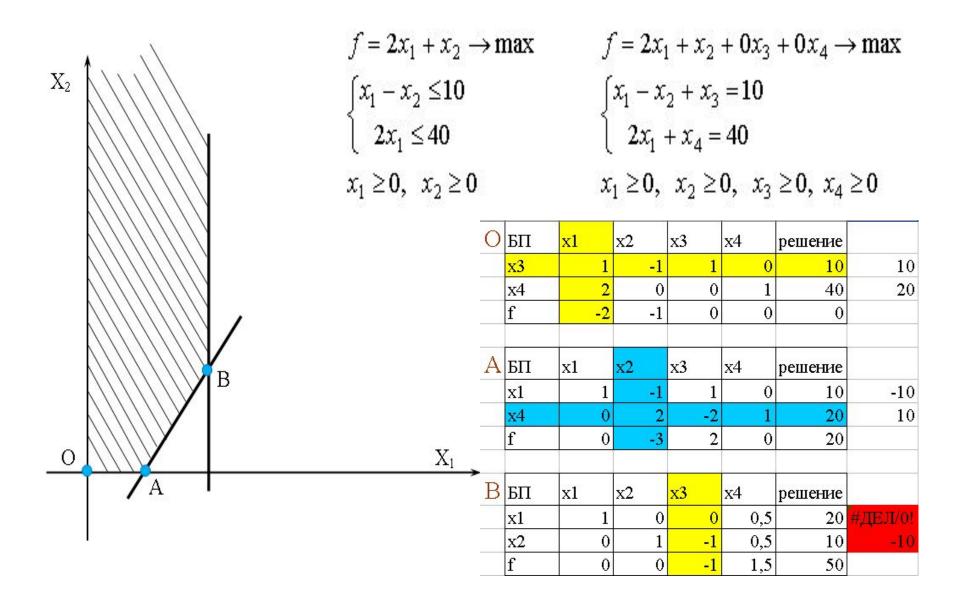
$$\begin{cases} x_1 + 2x_2 + x_3 = 5 \\ x_1 + x_2 + x_4 = 4 \end{cases}$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0, \quad x_4 \ge 0$$

В	-
A	- - -
	-
	X_1
	-

0	БП	x1	x2	x3	x4	решение	
	x3	1	2	1	0	5	2,5
	x4	1	1	0	1	4	4
	f	-2	-4	0	0	0	
В	БП	x1	x2	x3	x4	решение	
	x2	0,5	1	0,5	0	2,5	5
	x4	0,5	0	-0,5	1	1,5	3
	f	0	0	2	0	10	
A	БП	x1	x2	x3	x4	решение	
	x2	0	1	1	-1	1	
	x1	1	0	-1	2	3	
	f	0	0	2	0	10	

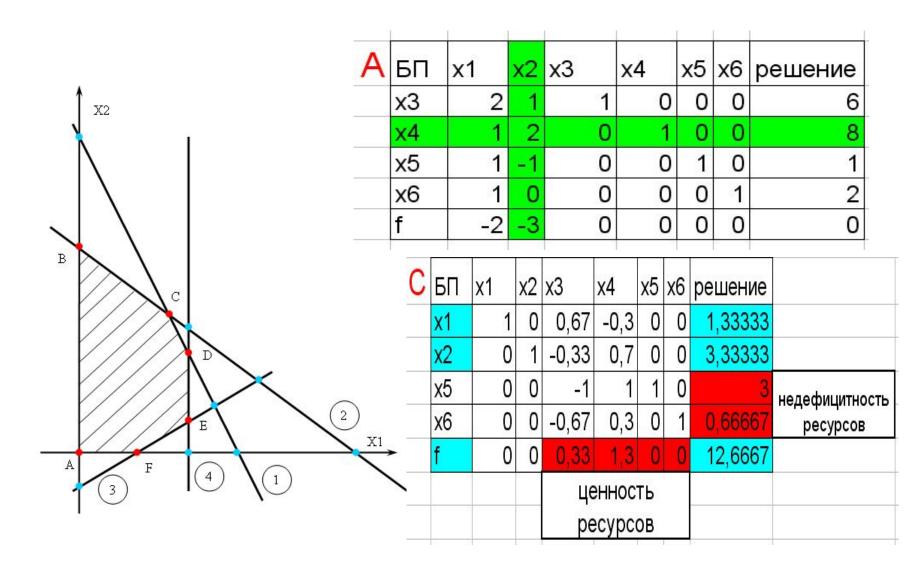
III Неограниченное решение



Анализ ЗЛП на чувствительность

- I Статус ресурса дефицитный (недефицитный) – определяется по значению дополнительных переменных в оптимальном решении
- II Ценность ресурса определяется коэффициентами ЦФ при дополнительных переменных в оптимальном решении

Статус и ценность ресурсов



Анализ ЗЛП на чувствительность – изменение запасов ресурсов

Таблица соответствует оптимальному решению

БП	X_1	X_2		X_n	X_{n+1}	2000	X_{n+i}		X_{n+m}	Решение
Y_1	A_{11}	A_{12}	1330	A_{1n}	$A_{\mathbf{l}(n+1)}$	***	$A_{\mathbf{l}(n+i)}$	***	$A_{\mathbf{l}(n+m)}$	R_1
Y_2	A_{21}	A_{22}		A_{2n}	$A_{2(n+1)}$		$A_{2(n+i)}$		$A_{2(n+m)}$	R_2
***	330	666			ccc	333				***
Y_k	A_{k1}	A_{k2}		A_{kn}	$A_{k(n+1)}$		$A_{k(n+i)}$		$A_{k(n+m)}$	R_k
										111
Y_m	A_{m1}	A_{m2}	63636	A_{mn}	$A_{m(n+1)}$	***	$A_{m(n+i)}$	30.00	$A_{m(n+m)}$	R_m
f	F_1	F_2	1111	F_n	F_{n+1}		F_{n+i}		F_{n+m}	Z

Изменение правой части одного из ограничений:

$$b_i + d$$
 $(d > 0$ или $d < 0$)

Варианты рассуждений при изменении:

а) решение задачи заново не требуется

$$Y_k = R_k + A_{k(n+i)}d$$

$$Z' = Z + F_{n+i}d$$

$$k = \overline{1, m}$$

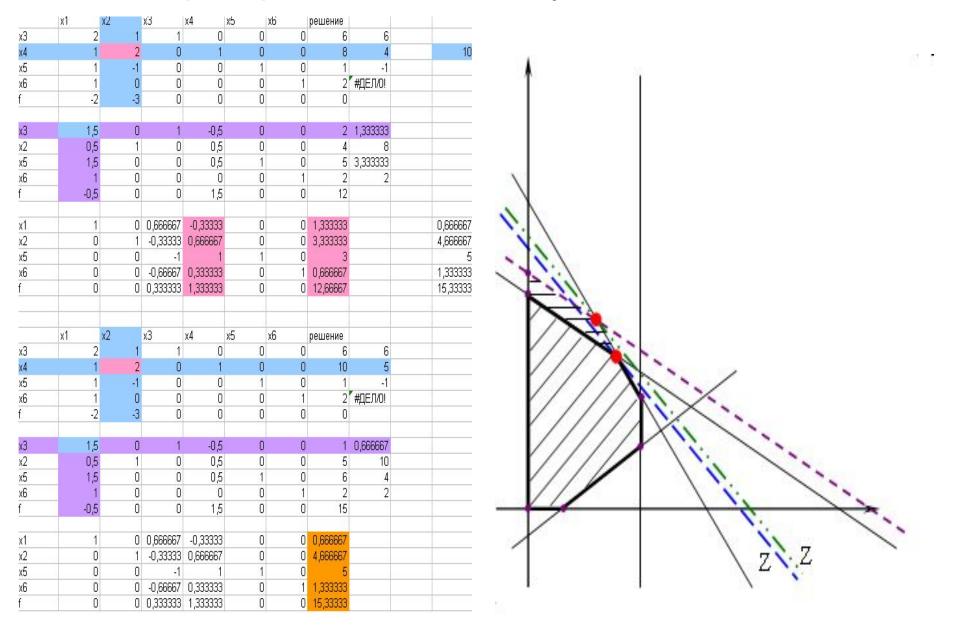
$$Z' = Z + F_{n+i}d$$
 если диапазон $d \in (D_1, D_2)$ из условия $Y_k = R_k + A_{k(n+i)}d > 0$ $k = \overline{1, m}$

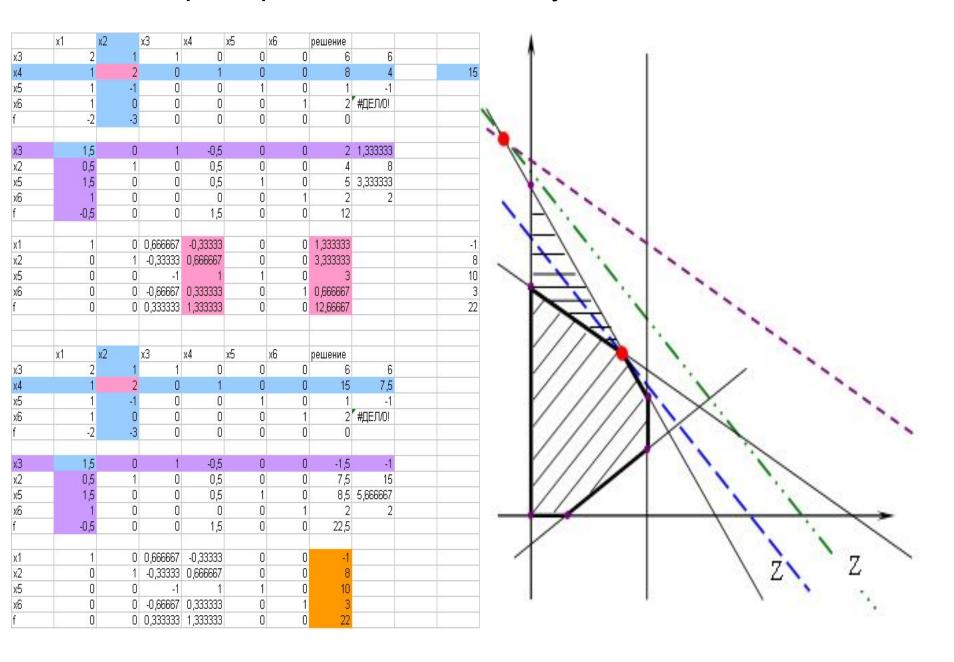
$$Y_k = R_k + A_{k(n+i)}d > 0 \ k = \overline{1, m}$$

- б) при $d < D_1$ или $d > D_2$ имеем недопустимый базис (сохранен принципом оптимальности)
 - 1. решать задачу заново

или

2. применить двойственный симплекс метод для перехода к допустимому решению





Анализ ЗЛП на чувствительность – изменение коэффициентов ЦФ

Оптимальное решение: 1. базисные переменные
$$Y_1 = R_1, \ Y_2 = R_2, \ \dots, \ Y_m = R_m$$

2. свободные переменные
$$W_1 = 0, \ W_2 = 0, \ \dots, W_n = 0$$

3. Коэффициенты ЦФ - при Y_i $\left(i=\overline{1,m}\right)$ - 0

при
$$W_k$$
 $\left(k = \overline{1,n}\right)$ - F_k

Изменение коэффициента Ц Φ в исходной постановке задачи при переменной X_j

$$C_j'=C_j+d\quad \left(d>0 \quad$$
или $d<0
ight)$ X_j - в оптимальном решении среди базисных $(Y_i\quad i=\overline{1,m})\ \leftrightarrow Y_q=R_q$

Варианты рассуждений: 1. изменения базиса и значений базисных переменных нет,

2. изменения в строке ЦФ

решать задачу заново не надо

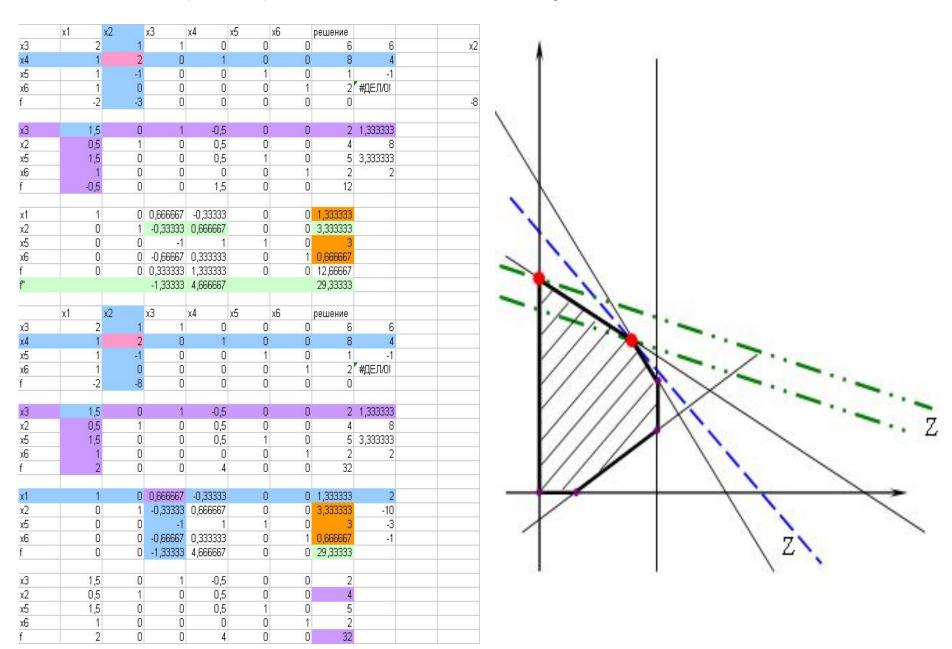
а) при $d \in (D_1, D_2)$ - оптимальное решение (набор базисных переменных и их значения) не изменяется

$$F_k'=F_k+A_{qk}d \quad \text{при} \ W_k \quad k=\overline{1,n}$$

$$Z'=Z+R_qd$$
 диапазон (D_1,D_2) из условия $F_k'=F_k+A_{qk}d>0$

б) при $d < D_1$ или $d > D_2$ - пересчет F_k' и Z' - имеем допустимый неоптимальный базис, осуществляем поиск оптимального решения далее симплекс-методом





Двойственный симплекс-метод

применение – поиск нового оптимального решения

1. анализ на чувствительность – добавление нового ограничения или изменение старого

- 2. поиск целочисленного решения
- Обычный СМ
- 1. начальное базисное решение – допустимо
- 2. промежуточные решения допустимые
- 3. значение ЦФ улучшается

- Двойственный СМ
- 1. начальное базисное решение недопустимое с признаками оптимальности (решение «лучше, чем оптимальное»)
- 2. промежуточные решения недопустимые с признаками оптимальности
- 3. значение ЦФ ухудшается

Алгоритм двойственного симплекс-метода

Алгоритм при максимизации ЦФ

				(2 - 2		2 2	
БП	X_1		X_s	 X_n	X_{n+1}		X_{n+m}	Решение
Y_1	A_{11}	3*3*0*0	A_{1s}	 A_{1n}	$A_{\mathbf{l}(n+1)}$		$A_{\mathbf{l}(n+m)}$	R_1
)*****		 			333	999
Y_r	A_{r1}		A_{rs}	 A_{rn}	$A_{k(n+1)}$	•••	$A_{r(n+m)}$	R_r
	333	_xxx		 	333		333	999
Y_m	A_{m1}		A_{ms}	 A_{mn}	$A_{m(n+1)}$		$A_{m(n+m)}$	R_m
f	F_1		F_{s}	 F_n	F_{n+1}		F_{n+m}	Z

Ведущая строка

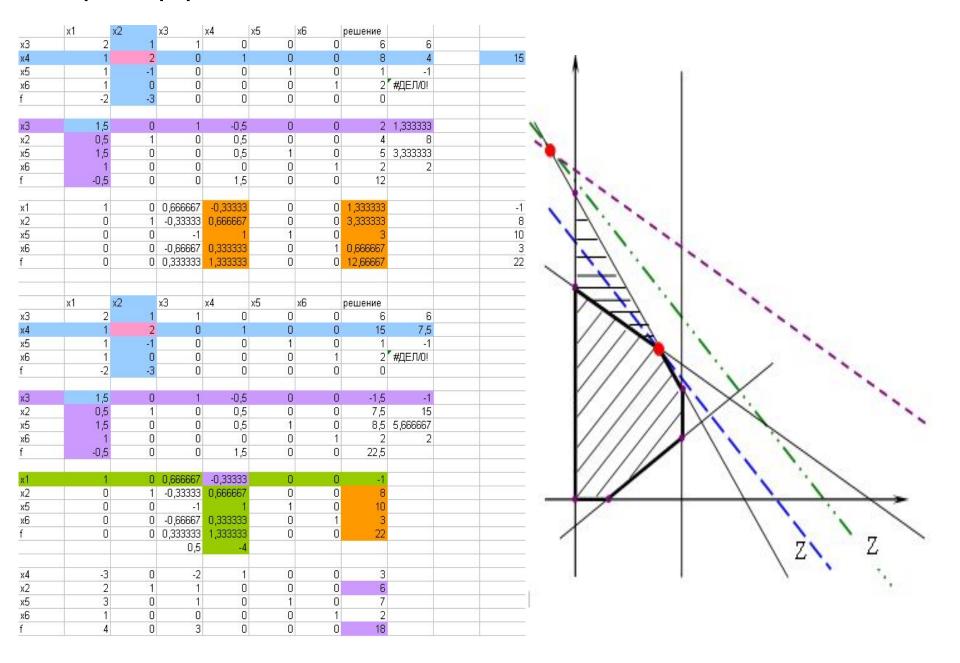
Ведущий столбец

- 1. <u>выбор ведущей строки</u> исключаемая из базиса переменная $Y_r = R_r$ $R_r < 0$ причем $\left| R_r \right| = \max_k \left| R_k \right|$ $k = \overline{1,m}$ (если все $R_k > 0$ оптимум найден)
- 2. выбор ведущего столбца включаемая в базис переменная $X_{\it s}$

$$A_{rs} < 0$$
 - выбор из условия $\min_j \left| \frac{F_j}{A_{rj}} \right| = \left| \frac{F_s}{A_{rs}} \right|$, A_{rs} - ведущий элемент

3. расчет нового базисного решения процедурами симплекс-метода справедливо равенство $F_j' = F_j - F_s A_{rj} / A_{rs} > 0$

Пример решения ЗЛП двойственным симплекс методом



Понятие двойственной ЗЛП

Прямая задача линейного программирования в канонической форме

$$Z = \sum_{j=1}^{n} C_j X_j \to \max/\min$$

$$\sum_{j=1}^{n} a_{ij} X_{j} = b_{i} \quad i = \overline{1, m}$$

$$X_{j} \ge 0 \qquad j = \overline{1, n}$$

п переменных – исходные и дополнительные

- 1. решение ДЗЛП из симплекс-таблицы с оптимальным решением ПЗЛП
- 2. решение ПЗЛП из симплекс-таблицы с оптимальным решением ДЗЛП, сформулированной из этой ПЗЛП

Правила преобразования ПЗЛП в ДЗЛП на основе канонической формы

- 1. Каждому из m ограничений ПЗЛП соответствует переменная ДЗЛП
- 2. Каждому из n переменных ПЗЛП соответствует ограничение ДЗЛП
- 3. Коэффициенты при переменной в ограничениях ПЗЛП переходят в коэффициенты ограничения ДЗЛП, соответствующего этой переменной, правая часть формируемого ограничения ДЗЛП равна коэффициенту ЦФ при этой переменной в ПЗЛП
- 4. Коэффициенты ЦФ ДЗЛП равны правым частям ограничений ПЗЛП

ЦФ ПЗЛП	ДЗЛП							
	ЦФ	Прямые ограничения						
	ограничений		на переменные					
Максимизация	Минимизация	« <u>></u> »	Ограничений нет					
Минимизация	Максимизация	<u>«≤</u> »	Ограничений нет					

Пример преобразования ПЗЛП в ДЗЛП

ПЗЛП

$$Z = 15x_1 + 12x_2 \rightarrow \min$$

$$\begin{cases} x_1 + 2x_2 \ge 3 \\ 2x_1 - 4x_2 \le 5 \end{cases}$$

$$x_1, x_2 \ge 0$$

ПЗЛП в канонической форме

$$Z = 15x_1 + 12x_2 + 0x_3 + 0x_4 \rightarrow \min$$

$$\begin{cases} x_1 + 2x_2 - x_3 = 3 \\ 2x_1 - 4x_2 + x_4 = 5 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$Z = 3y_1 + 5y_2 \rightarrow \max$$

$$\begin{cases} y_1 + 2y_2 \le 15 \\ 2y_1 - 4y_2 \le 12 \\ -y_1 + 0y_2 \le 0 \end{cases} \Rightarrow \begin{cases} y_1 \ge 0 \\ y_2 \le 0 \end{cases}$$

$$0y_1 + y_2 \le 0$$

Взаимосвязь ПЗЛП и ДЗЛП

1. для любой симплекс итерации прямой или двойственной задачи

2. для любой пары допустимых решений прямой и двойственной задачи

$$\left\{ egin{aligned} 3 & \text{начения } \mathbf{U} \Phi \\ \mathbf{b} & \text{задаче максимизации} \end{array}
ight\} \leq \left\{ egin{aligned} 3 & \text{начения } \mathbf{U} \Phi \\ \mathbf{b} & \text{задаче минимизации} \end{array}
ight\}$$

в точке оптимума – строгое равенство: «равновесие»

Разновидности симплекс-метода

- 1. <u>Модифицированный симплекс-</u> метод
- 2. <u>Метод решения задач с</u> <u>ограниченными переменными</u>
- 3. Метод декомпозиции
- 4. <u>Параметрическое линейное</u> программирование
- 5. Метод Кармаркара