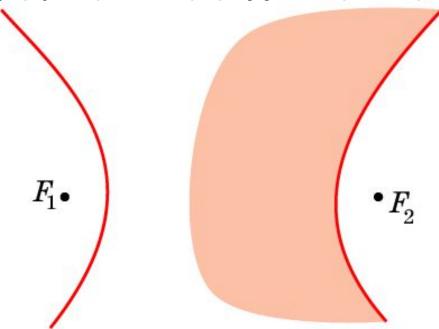
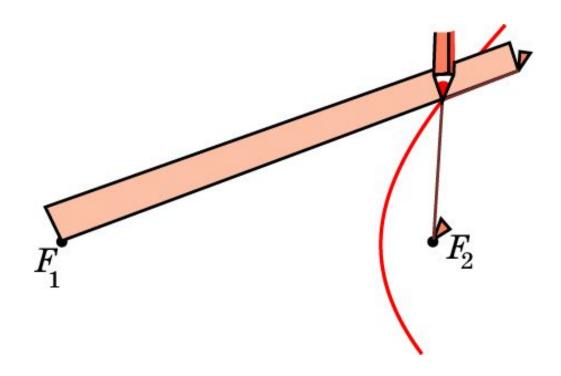

На клетчатой бумаге постройте несколько точек, расположенных в узлах сетки, модуль разности расстояний от которых до точек F_1 и F_2 равен 2 (стороны клеток равны 1). Соедините их плавной

кривой.

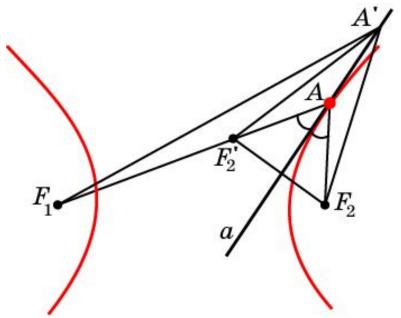

Определение гиперболы

Геометрическое место точек плоскости, разность расстояний от которых до двух заданных точек F_1, F_2 есть величина постоянная, называется гиперболой. Точки F_1, F_2 называются фокусами гиперболы.

Таким образом, для точек A гиперболы с фокусами F_1 , F_2 выполняется одно из равенств: AF_1 - AF_2 = c, AF_2 - AF_1 = c, где c - некоторый заданный отрезок.


Найдите геометрическое место точек A, для которых разность $AF_1 - AF_2$ расстояний до двух заданных точек F_1 , F_2 : а) больше заданной величины c: б) меньше заданной величины c.

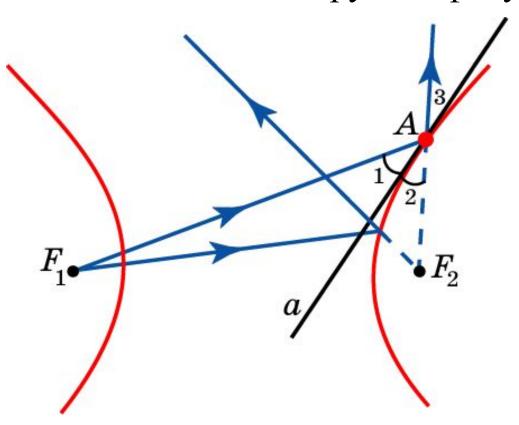
Ответ: а) Точки A ', расположенные внутри ветви гиперболы; б) точки A '', расположенные вне ветви гиперболы.


Рисуем гиперболу

По данному рисунку укажите способ построения гиперболы с помощью линейки, кнопок, нитки и карандаша.

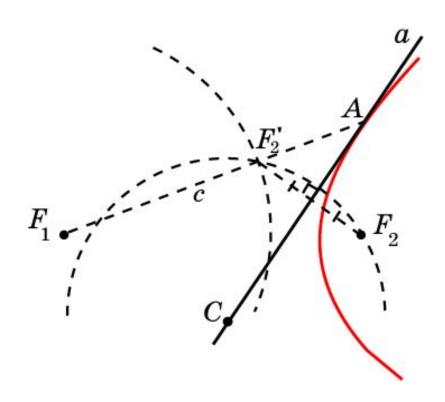
Касательная к гиперболе

Прямая, проходящая через точку A гиперболы, остальные точки A' которой лежат во внешней области, т. е. удовлетворяют неравенству $A'F_1 - A'F_2 < c$, называется касательной к гиперболе. Точка A называется точкой касания.



Теорема. Пусть A - точка гиперболы с фокусами F_1 , F_2 . Тогда касательной к гиперболе, проходящей через точку A, является прямая, содержащая биссектрису угла F_1AF_2 .

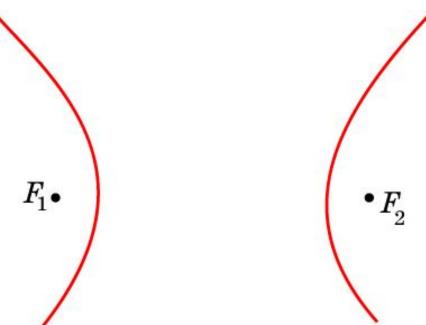
Проведите доказательство теоремы, используя рисунок.


Фокальное свойство гиперболы

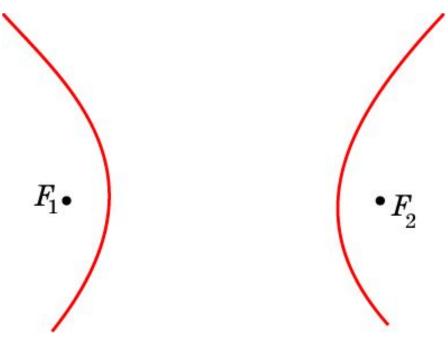
Если источник света поместить в один из фокусов гиперболы, то лучи, отразившись от нее, пойдут так, как будто бы они исходят из другого фокуса.

Построение касательной

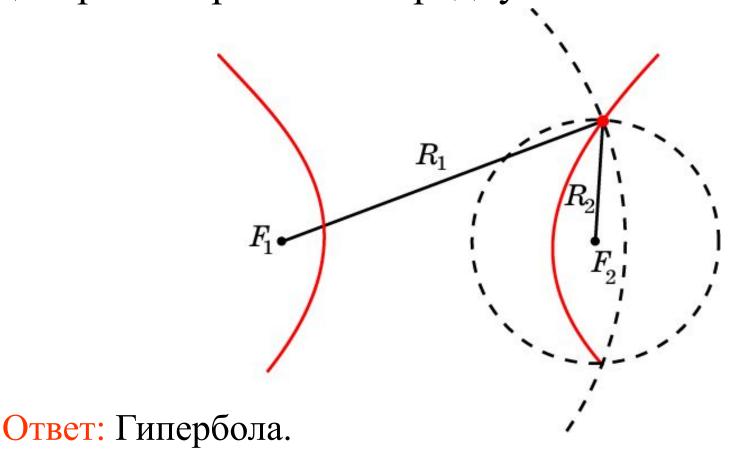
По данному рисунку укажите способ построения касательной, проходящей через точку C, к гиперболе, заданной фокусами F_1 , F_2 и константой c, с помощью циркуля и линейки.



Сколько касательных можно провести к одной ветви гиперболы из точки: а) принадлежащей ветви гиперболы; б) лежащей вне ветви гиперболы; в) лежащей внутри ветви гиперболы?


Ответ: а) Одну; б) две; в) ни одной.

Дана гипербола с фокусами F_1 , F_2 и константой c. Найдите наименьшее расстояние между точками, лежащими на разных ветвях гиперболы.


Ответ: c.

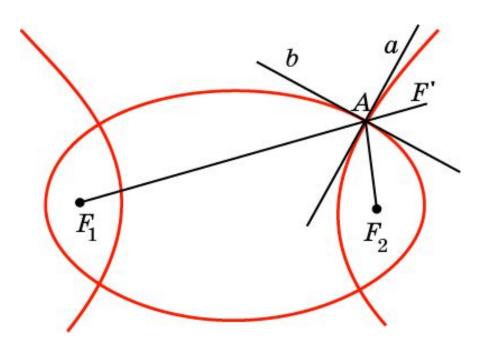
Расстояние между фокусами гиперболы равно 6 см, константа c равна 4 см. Чему равно наименьшее расстояние от точек гиперболы до фокусов?

Ответ: 1 см.

Найдите геометрическое место точек пересечения пар окружностей с заданными центрами и разностью радиусов.

Найдите геометрическое место центров окружностей, касающихся двух заданных

окружностей.



Ответ: Гипербола.

Что будет происходить с гиперболой, если константа c не изменяется, а фокусы: а) приближаются друг к другу; б) удаляются друг от друга?

Ответ: а) Ветви гиперболы сжимаются; б) ветви гиперболы расширяются.

Какой угол образуют касательные, к эллипсу и гиперболе с общими фокусами, проведенные через их общую точку?

Решение: Касательная к гиперболе содержит биссектрису угла F_1AF_2 . Касательная к эллипсу содержит биссектрису угла F_2AF . Следовательно, искомый угол равен 90° .