
ОБРАБОТКА И АНАЛИЗ ЧИСЛОВОЙ ИНФОРМАЦИИ

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

©Румянцев Михаил Игоревич, профессор, канд. техн. наук

Магнитогорск, 2007-2011

Корреляционный анализ – это метод математической статистики, который позволяет определить степень взаимосвязи между различными параметрами

ПАРНЫЙ

Оценивается степень взаимосвязи отклика Y и одного фактора X

МНОЖЕСТВЕННЫЙ

Оценивается степень взаимосвязи отклика Y и нескольких факторов X1, ..., Xj, ... Xm

ХАРАКТЕРИСТИКА СТЕПЕНИ ВЗАИМОСВЯЗИ ПАРАМЕТРОВ

Характеристикой степени взаимосвязи параметров является статистическая величина, называемая коэффициентом корреляции

КОЭФФИЦИЕНТ ПАРНОЙ КОРРЕЛЯЦИИ

$$\rho = \frac{M\{[x - M(X)][y - M(Y)]\}}{\sqrt{M[x - M(X)]^2 M[y - M(Y)]^2}} = \frac{K_{XY}}{\sqrt{D(X)D(Y)}}$$

- К_{ХҮ}- корреляционный момент. Он представляет собой математическое ожидание произведения отклонений значений х и у случайных величин X и Y от их математических ожиданий M(X) и M(Y);
- D(X)- дисперсия случайной величины X;
- D(Y)- дисперсия случайной величины Y.

ВЫБОРОЧНАЯ ОЦЕНКА КОЭФФИЦИЕНТА ПАРНОЙ КОРРЕЛЯЦИИ

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1) s_X s_Y}$$

 \overline{x} и \overline{y} - средние выборочные значения фактора и отклика;

 $s_{_{X}}$ и $s_{_{Y}}$ - выборочные стандартные отклонения фактора и отклика;

n - число наблюдений.

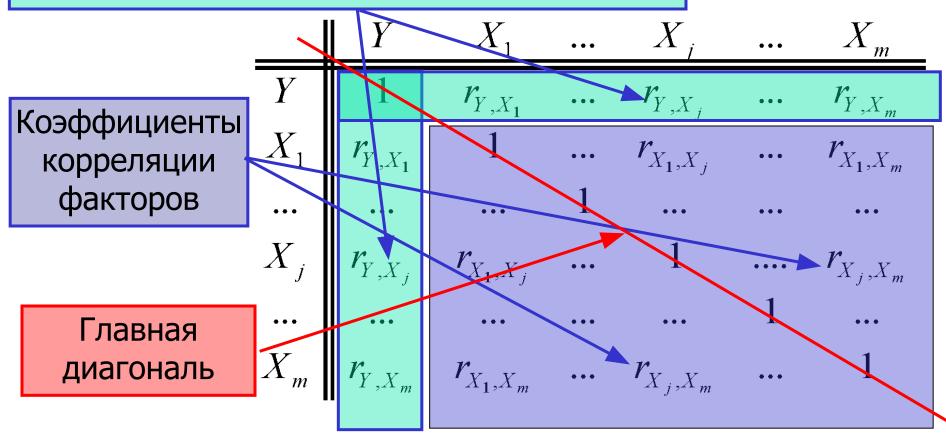
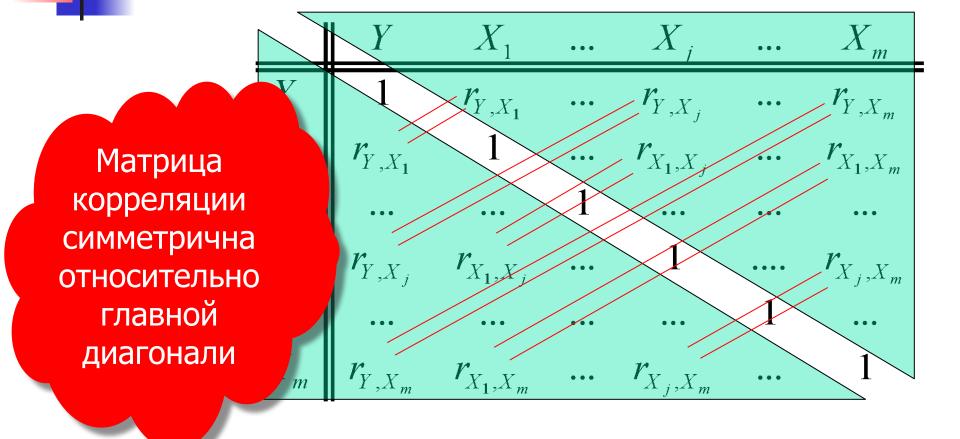
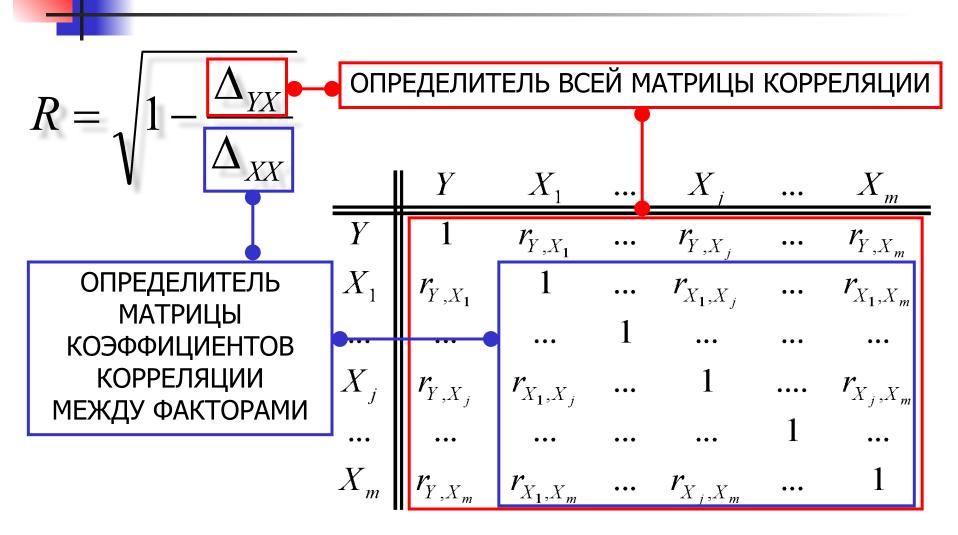

МАТРИЦА КОРРЕЛЯЦИИ

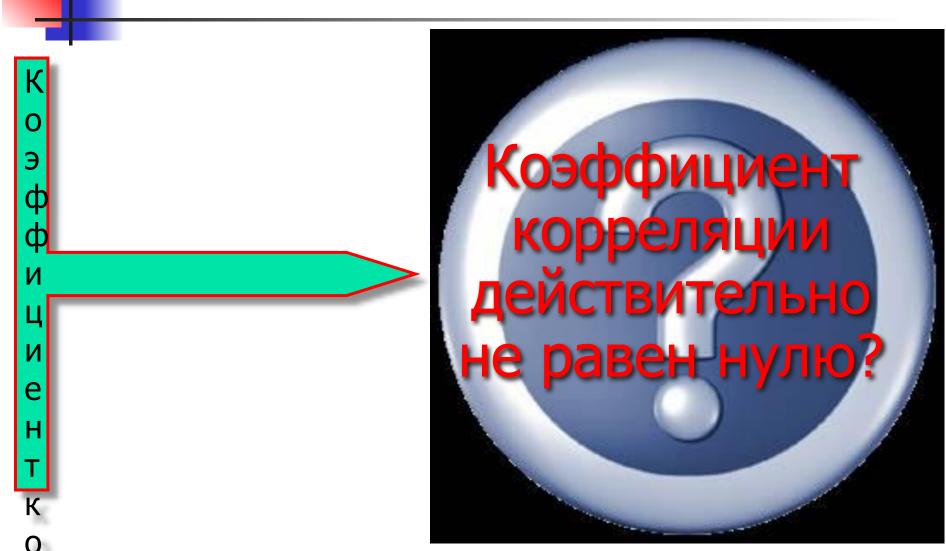
Таблица коэффициентов парной корреляции, которые отображают взаимодействия отклика с каждым из факторов а также факторов между собой


	Y	X_1		X_{j}		X_{m}
Y	1	r_{Y,X_1}	•	r_{Y,X_j}	•	\mathcal{F}_{Y,X_m}
X_1	r_{Y,X_1}	1	••••	\mathbf{r}_{X_1,X_j}	••••	r_{X_1,X_m}
••••		•	1	•••	••••	••••
X_{j}	r_{Y,X_j}	r_{X_1,X_j}	••••	1	••••	\mathbf{r}_{X_j,X_m}
••••	•::.	•••	••••	•••	1	•••
X_{m}	r_{Y,X_m}	r_{X_1,X_m}	••••	r_{X_i,X_m}	••••	1

СТРУКТУРА МАТРИЦЫ КОРРЕЛЯЦИИ


Коэффициенты парной корреляции отклика

СИММЕТРИЧНОСТЬ МАТРИЦЫ КОРРЕЛЯЦИИ


КОЭФФИЦИЕНТ МНОЖЕСТВЕННОЙ КОРРЕЛЯЦИИ

СВОЙСТВА КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

- Коэффициент корреляции не имеет размерности и поэтому сопоставим для различных статистических рядов.
- Значение коэффициента корреляции лежит в пределах от -1 до +1.
- Если коэффициент корреляции равен 1, между параметрами существует функциональная зависимость.
- Коэффициент корреляции должен быть проверен на значимость.

СТАТИСТИЧЕСКАЯ ЗНАЧИМОСТЬ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

УСЛОВИЯ ЗНАЧИМОСТИ КОЭФФИЦИЕНТА ПАРНОЙ КОРРЕЛЯЦИИ

Тест Стьюдента

$$t = \frac{|r|}{\sqrt{1-r^2}} \sqrt{n-2} > t \left[\alpha; n-2\right]$$

t – рассчитанное число Стьюдента

t[a;n-2] — табличное число Стьюдента

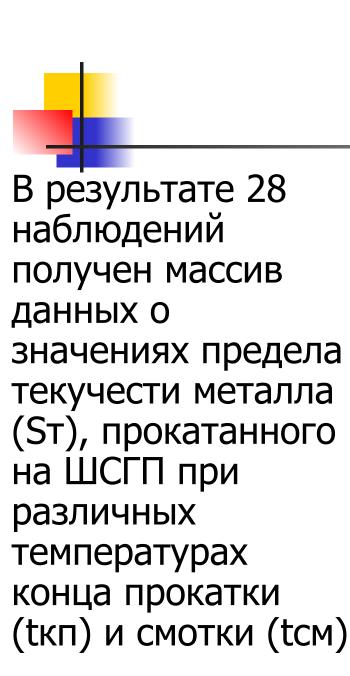
$$r > r_{min} = \sqrt{\frac{1}{1 + \frac{n-2}{(t[\alpha; n-2])^2}}}$$

r_{min} — минимальное статистически значимое значение коэффициента корреляции при доверительной вероятности p=1-a

УСЛОВИЕ ЗНАЧИМОСТИ КОЭФФИЦИЕНТА МНОЖЕСТВЕННОЙ КОРРЕЛЯЦИИ

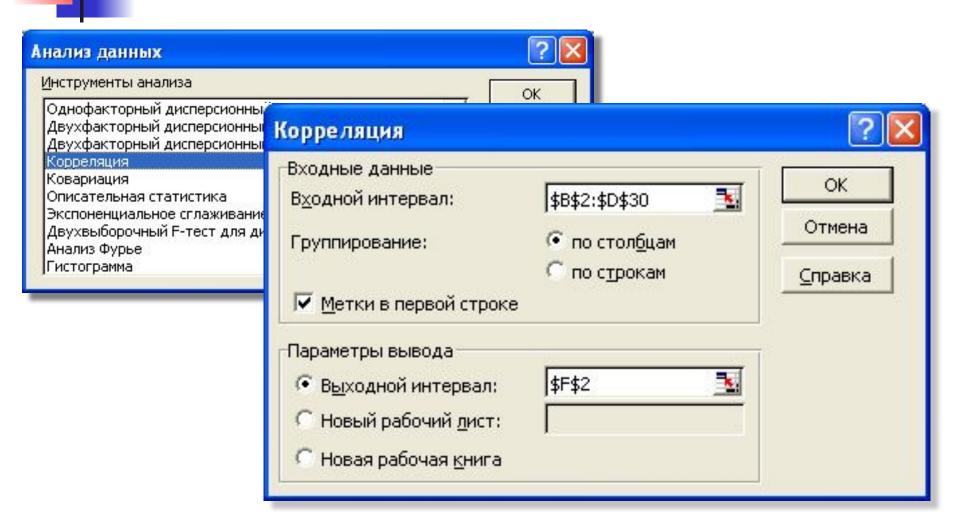
Тест Фишера

$$F_p = \frac{R^2}{(1-R^2)} \frac{(n-m-2)}{m} > F[\alpha; m; n-m-2]$$


т – число факторов;

Fp – рассчитанное число Фишера;

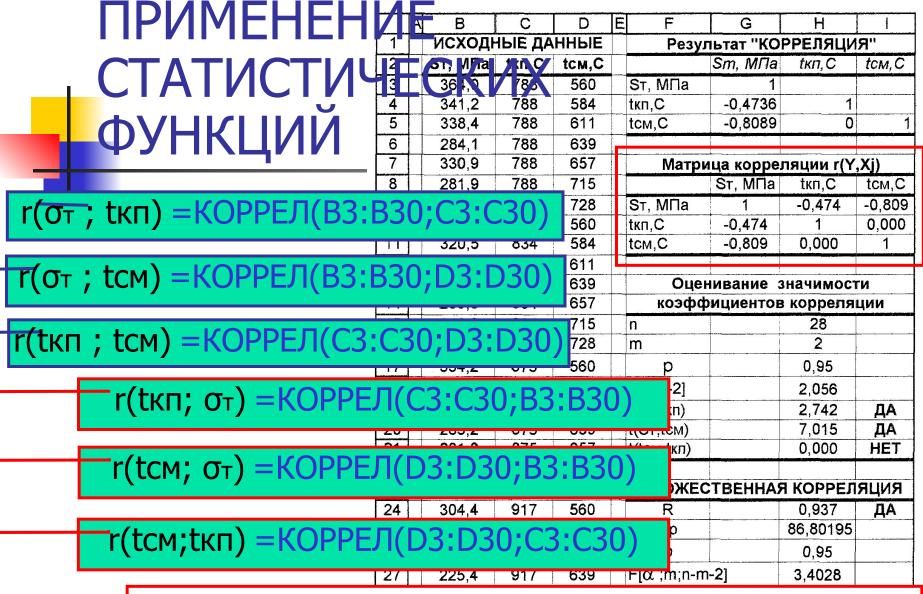
F[a;m;n-m-2] — табличное число Фишера при доверительной вероятности p=1-a.



ПРИМЕР КОРРЕЛЯЦИОННОГО АНАЛИЗА В MS EXCEL

		Α	В	С	D	E	F	G	Н	I
	1		ИСХОДН	НЫЕ ДА	ННЫЕ		Результат "КОРРЕЛЯЦИ			'Я"
	2		Ѕ т, МПа	tĸn,C	tcm,C			Sm, M∏a	<i>tкп</i> ,С	tcм,С
	3		364,0	788	560		Ѕт, МПа	1		
	4		341,2	788	584	Γ	tкп,C	-0,4736	1	
	5		338,4	788	611		tсм,С	-0,8089	0	
	6		284,1	788	639					
	7		330,9	788	657	Г	Матри	ца корре	ляции r(Y	,Xj)
_	8		281,9	788	715			Ѕт, МПа	tкп,C	tсм,С
	9		265,9	788	728	Г	Ѕт, МПа	1	-0,474	-0,809
	10		336,4	834	560		tкп,С	-0,474	1	0,000
	11		320,5	834	584		tсм,С	-0,809	0,000	1
	12		336,8	834	611	Γ				
	13		299,4	834	639		Оцен	ивание :	значимост	ГИ
	14		269,3	834	657		коэфф	ициентов	з корреля	ции
	15		240,3	834	715		n		28	
	16		206,3	834	728		m		2	
	17		334,2	875	560		р		0,95	
	18		290,3	875	584		$t[\alpha;n-2]$		2,056	
	19		318,5	875	611		t(Sт,tкп)		2,742	ДА
	20		283,2	875	639		t(Sт,tcм)		7,015	ДА
	21		281,0	875	657		t(tcм,tкп)		0,000	HET
	22		233,1	875	715					
	23		200,0	875	728		МНОЖЕС	TBEHHA	Я КОРРЕЛ	яция
	24		304,4	917	560		R		0,937	ДА
	25	- 1925	307,5	917	584		Fp		86,80195	
	26		268,8	917	611		р		0,95	
	27		225,4	917	639		$F[\alpha;m;n-m]$	-2]	3,4028	
	28		270,3	917	657		D		87,9	%
	29		181,3	917	715	Γ				
	30		175,3	917	728	Γ				
	31									
	N		·							

ПРИМЕНЕНИЕ ИНСТРУМЕНТА «КОРРЕЛЯЦИЯ»



Коэффициент Парной корреляции между О_т и tкп r(О_т; tкп)

Коэффициент Парной корреляции между О_т и tcм r(О_т; tcм)

Коэффициент парной корреляции между tкп и tcм r(tкп; tcm)

	А В	С	D	E		G	Н	I
1	ИСХОДІ	ИСХОДНЫЕ ДАННЫЕ			Результат "КОРРЕЛЯЦИЯ"			ІЯ "
2	S т, МПа	tкп,С	tcm,C			Sm, M∏a	tкп,C	tсм, С
3	364,0	788	560		Ѕт, МПа	1		
4	341,2	788	584		tкп,C	-0,4736	1	
5	338,4	788	611		tсм,C	-0,8089	0	1
6	284,1	788	639					
7	330,9	788	657		Матрица корреляции r(Y,Xj)			,Xj)
8	281,9	788	715			Ѕт, МПа	tкп,С	tсм,С
9	265,9	788	728		Ѕт, МПа	1	-0,474	-0,809
10	336,4	834	560		tкп,С	-0,474	1	0,000
11	320,5	834	584		tcm,C	-0,809	0,000	1
12	336,8	834	611					
13	299,4	834	639		Оценивание значимости			
14	269,3	834	657		коэффициентов корреляции			
15	240,3	834	715		n		28	
16	206,3	834	728		m		2	
17	334,2	875	560	L	р		0,95	
18	290,3	875	584		$t[\alpha;n-2]$		2,056	
19	318,5	875	611		t(Sт,tкп)		2,742	ДА
20	283,2	875	639		t(ST,tcm)		7,015	ДА
21	281,0	875	657		t(tcм,tкп)		0,000	HET
22	233,1	875	715					
23	200,0	875	728		МНОЖЕС	TBEHHA	Я КОРРЕЛ	ЯЦИЯ
24	304,4	917	560		R		0,937	ДА
25	307,5	917	584		Fp		86,80195	
26	268,8	917	611		р		0,95	
27	225,4	917	639		F[α ;m;n-m-2] 3,4028			
28	270,3	917	657		D		87,9	%
29	181,3	917	715					
30	175,3	917	728					
31								

Матрица корреляции действительно симметрична относительно главной диагонали

Анализировалась связь между пределом текучести металла $\sigma_{_{T}}$, температурой конца прокатки tкп и смотки tсм при прокатке на ШСГП.

Какие коэффициенты парной корреляции являются статистически значимыми?

С доверительной вероятностью 95% статистически значимыми являются коэффициенты корреляции между пределом текучести и температурой конца прокатки $r(\sigma_{\tau}; t\kappa \pi) = -0.474$ а также между пределом текучести и температурой смотки $r(\sigma_{\tau}; tcm) = -0.809$.

Значимость коэффициентов подтверждается тем, что соответствующие расчетные числа Стьюдента $t(\sigma_T; t\kappa \pi)=2,742$ и $t(\sigma_T; t\kappa \pi)=7,015$ больше табличного t[0,05;26]=2,056.

О чем это свидетельствует?

Следовательно, предел текучести металла, прокатанного на ШСГП, связан с температурой конца прокатки и смотки.

Так как коэффициенты корреляции отрицательные, увеличение как температуры прокатки, так и температуры смотки уменьшает предел текучести прокатанного металла.

Так как $|r(\sigma_T; tcm)| > |r(\sigma_T; tkn)|$, степень влияния температуры смотки больше чем температуры конца прокатки.

Является ли значимым коэффициент множественной корреляции? Что это означает?

С доверительной вероятностью 95% коэффициент множественной корреляции $R(\sigma_{\tau};t\kappa \pi;tcm)=0,937$ является статистически значимым, т. к. расчетное число Фишера Fp=86,802 больше табличного F[0,05;2;24]=3,4028.

Это означает, что предел текучести металла, прокатанного на ШСГП, обусловлен совместным действием температуры конца прокатки и смотки.

О чем свидетельствует значение коэффициента множественной детерминации?

Коэффициент множественной детерминации D=0,879 свидетельствует, что при прокатке на ШСГП предел текучести металла на 87,9% обусловлен сочетанием температуры конца прокатки и смотки.