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First, a Word About Hammers

“If the only tool you have 1s a hammer, you tend
to see every problem as a nail.”

Abraham Maslow

 requirements for this to be a good 1dea

 a way of transforming problems into nails (MLCPs)
* a hammer (Lemke’s algorithm)

e lots of advanced info + one hour =

something has to give

* majority of lecture 1s motivating you to care about
the hammer by showing you how useful nails can be

* make you hunger for more info post-lecture

e very little on how the hammer works i112 this hour



Hammers (cont.)

* by definition, not the optimal way to solve
problems, BUT

— computers are very fast these days

— often don’t care about optimality
e prepro, prototypes, tools, not a profile hotspot, etc.

— can always move to optimal solution after you
verify it’s a problem you actually want to solve



What are “advanced game math
problems™?

» problems that are ammenable to
mathematical modeling

* state the problem clearly
» state the desired solution clearly

e describe the problem with equations so a proposed
solution’s quality 1s measurable

» figure out how to solve the equations

* why not hack 1t?

* | believe better modeling is the future of game
technology development (consistency, Rot reality)



Prerequisites

* linear algebra

e vector, matrix symbol manipulation at least

e calculus concepts
 what derivatives mean
» comfortable with math notation and
concepts



Overview of Lecture

e random assortment of example problems
breifly mentioned

* 5 specific example problems in some depth

* including one that I ran into recently and how I
solved 1t

 generalize the example models
e transform them all to MLCPs
* solve MLCPs with Lemke’s algorithm

§



A Look Forward

* linear equations e uadratic programming
Ax=Db min % x'Qx + ¢'x
e linear inequalities s.t. AX>=D
» linear programming ° linear complimentarity problem
min c¢'x a=Aft+b
s.t. Ax >=D, etc. a>=0,{>=0
at,=0



Applications to Games

grap

computationa
visibility
contact

curve fitting
constraints
integration
graph theory

| geometry .

n1cs, physics, a1, even ul

network flow
€conomics

site allocation
game theory

IK

machine learning
Image processing



Applications to Games (cont.)

* don’t forget...

— The Elastohydrodynamic Lubrication Problem

— Solving Optimal Ownership Structures

* “The two parties establish a relationship in which
they exchange feed ingredients, q, and manure, m.”



Specific Examples #1a:
Ease Cubic Fitting

e warm up with an ease |
curve cubic X
x(t)=at*+bt>+ct+d /
x’(t)=3at*+2bt+c o T 1
* 4 unknowns a,b,c,d
(DOFs) we get to set, we
choose:

x(0)=0,x(1)=1
x’(0)=0,x(1)=0
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Specific Examples #1a:
Ease Cubic Fitting (cont.)

e x(t)=at+bt*+ct+d, x’(t)=3at*+2bt+c
e x(0) = a0>+b0*+c0+d =d=0
e x(1)=al*+bl*+cl+d =atbtctd=1

e x’(0) =3a0’+2b0+c =c=0
e x’(1)=3al*+2bl+¢c =3a+2b+c=0
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Specific Examples #1a:
Ease Cubic Fitting (cont.)

ed=0, atbtctd=1, ¢c=0, 3a+2b+c=0

e atb=1, 3a+2b=0
e a=1-b => 3(1-b)+2b=3-3b+2b=3-b=0
e b=3, a=-2

e x(t) =3t*- 2t
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Specific Examples #1a:
Ease Cubic Fitting (cont.)

Or,

x(0) = d=0

x(1) = a+ btc+d =1

x’(0) = C =0

x’(I)=3a+2b+c =0

x(0)] [0 O O 1||a 0

;{,((10)) = (1) (1) i (1) E = (1) (can solve for any rhs)
x(HI 13 2 1 0l1d 0

Ax = b, a system of linear equations
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Specific Examples #1b:
Cubic Spline Fitting

same technique to fit
higher order polynomials,
but they “wiggle”

piecewise cubic 1s better
“natural cubic spline”
(=X x4, )7,
X’ (t)-x". (t)=0
x7(t)-x"_(t)=0

there 1s coupling between
the splines, must solve

simultaneously

* 4 DOF per spline

— 2 endpoint eqns per spline

— 4 derivative eqns for inside
points

— 2 missing eqns = endpoint
slopes



Specific Examples #1b:
Cubic Spline Fitting (cont.)

(0=x x(4,)7x,
X'() - x7 () =0
X)) -x7 L) =0

aO XO

o0 0 0 bO }61
o0 0 0 “o
ce o o do 0 Ax =D, a
o0 00 a | = X, system of
N x,| linear equations
o0 0000 0 0 1 2

o0 0 0 2 0

o0 0 0 d, 0

: ; 115



Specific Examples #2:
Minimum Cost Network Flow

* what 1s the cheapest flow
route(s) from sources to sinks?

 model, want to minimize cost
c. =costof ito j arc
b. =1’s supply/demand, sum(b.)=0
X = quantity shipped on i to j arc
Xy = sum(x, ) = flow into k
X, = sum(x, .) = flow out of k

k
* ftlow balance: x,, -x ,=-b,

* one-way streets: X, >= 0




Specific Examples #2:
Minimum Cost Network Flow (cont.)

* min cost: minimize c'x
e the sum of the costs times the
quantities shipped (¢'x = ¢ -x)
* flow balance 1s coupling: matrix

X = Xps = B,

X
1-1-110 0 0 0 10 XZZ b minimize ¢'x
00 X a | subject to
000-1-1-11... e b, N
Xba — |b X = -
Xbc i bc x>=0
Xpe d| alinear
X 1 ' | programming
: pFoblem




Specific Examples #3:
Points 1in Polys

* point in convex poly 3
defined by planes Sy

n, - X>= dl
Ax >=D,

n, x>=d, . . .
n, - X >= 6,3 linear inequality

e farthest point in a
direction 1n poly, c:
min -¢'x
s.t. AX>=D
linear programming 1§



Specific Examples #3:
Points 1n Polys (cont.)

e closest point 1n two polys s
: )
min (X,-X, ) N
s.t. A x >=b
A,X,>=b,
e stack ‘em in blocks, AXx >=b
X b
X = X; b= b; A:|A1A2|

what about (x,-x,)*, how do we stack it?



Specific Examples #3:
Points 1n Polys (cont.)

* how do we stack x,,x, into single x given
2

2 _
(X,-X,)" = X22-2X2‘X1‘|‘X1

1 -1 (1% _ 2 . 2_ T
=X,72x, "X X 7 =x QX

T T

) xX*=xx=x"X
min X Qx 1 = identity matrix
s.t. AX>=b

a quadratic programming problem
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Specific Examples #3:
Points 1n Polys (cont.)
e more points, more polys!

min (Xz-xl)2 + (X3-X2)2 + (X3-X1)2
min x'Qx

2 1 y
%l = x'Qx
X '
|
s.t. AX>=D

-1 2 -1
another quadratic programming problem

|XlT XZT X3

-1 -1 2

» same form for all these poly problems
* never specified 2d, 3d, 4d, nd! 21



Specific Examples #4:
Contact

 model like IK constraints ax Iaz

a=Af+b ~ )
a >= (0, no penetrating £ f
f>=0, no pulling
af =0, complementarity I f
11
(can’t push if leaving) 4

A
linear complementarity problem £ Ifz

it’s a mixed LCP if some a. = 0, . free,

like for equality constraints
22



Specific Examples #3:
Joint Limits in CCD IK

how to do child-child constraints in CCD?

 parent-child are easy, but need a way to couple
two children to limit them relative to each other

how to model this & handle all the cases?
defined =g -a —
n n n
: 2 2
min (x, - d )+ (x,-d,)
8.0 Cppin <= 71X -3, X) S Cp s g, g
parent-child are easy in this framework:

C. . <=atx, <=¢
n 1 1

2mi 2max
another quadratic program:
min x'Qx -

s.t. Ax>=D 23



What Unifies These Examples?

* linear equations e uadratic programming
Ax=Db min % x'Qx + ¢'x
e linear inequalities s.t. AX>=D
» linear programming ° linear complimentarity problem
min c¢'x a=Aft+b
s.t. Ax >=D, etc. a>=0,{>=0
at,=0
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QP 1s a Superset of Most

e (uadratic * linear equations
programming « Ax=b
min 1/2XTQX + clx *Q,c,A,b=0
s.t. Ax >=Db * linear inequalities
Dx =e s Ax>=b
*Q,c,D,e=0
* linear programming
 min c'x
but MLCP 1s a superset . zt-eﬁ:x: b, etc.

of convex QP!
25



Karush-Kuhn-Tucker Optimality
Conditions get us to MLCP

0l T T
e for OP min 2 X Qx + ¢'X
0 Q . s.t. Ax -b>=0
e form “Lagrangian” Dx-e =0

L(x,u,v) =% x'Qx +c'x - u'(Ax - b) - v!(Dx - ¢)
e for optimality (1f convex):

oL/ ox =0
Ax-b>=0
Dx-e =0

u>=0 u(Ax-b).=0
— this 1s related to basic calculus min/max f’(x) = 0 solve
26



Karush-Kuhn-Tucker Optimality
Conditions (cont.)

L(x,u,v) =% x'Qx + c'x - u'(Ax - b) - vi(Dx - e)
=0L/0x=Qx+c-Au-D'v=0, x free

=Ax-b>=0, u>=0, w.u. =0

=Dx-e =0, v free

T ATl X C y,s=0

Y Q -D° -A _ X, v free
Sl=D 0 0 ||Y|+]° —0
W A 0 0 u -b W, U —~=
Wiui=0

27



This 1s an MLCP

y,s=10
y _DT _AT X C
s|_ g o o llv]L|-e X, v free
wio a0 o [lul [bf  Wu=0
I
£ + b

a = A +

af=0 somea>=0,some=0
11
some f >= 0, some free
(but they correspond so complementarity holds)

28



Modeling Summary

* a lot of interesting problems can be
formulated as MLCPs
— model the problem mathematically
— transform 1t to an MLCP

— on paper or in code with wrappers

— but what about solving MLCPs?

29



Solving MLCPs

(where I hope I made you hungry enough for homework)

* Lemke’s Algorithm 1s only about 2x as
complicated as Gaussian Elimination

 Lemke will solve LCPs, which some of
these problems transform into

e then, doing an “advanced start” to handle
the free variables gives you an MLCP
solver, which 1s just a bit more code over
plain Lemke’s Algorithm

30



Playing Around With MLCPs

 PATH, a MCP solver (superset of MLCP!)

» really stoked professional solver
« free version for “small” problems
* matlab or C

 OMatrix (Matlab clone) free trial (omatrix.com)

« only LCPs, but Lemke source 1s 1n trial

» not a great version, but it’s really small (two pages of code)
and quite useful for learning, with debug output

» good place to test out “advanced starts”

 my Lemke’s + advanced start code

* not great, but ’'m happy to share it
* it’s in Objective Caml :) 31



References for Lemke, etc.

free pdf book by Katta Murty on LCPs, etc.
free pdf book by Vanderbe1 on LPs

The LCP, Cottle, Pang, Stone

Practical Optimization, Fletcher

web has tons of material, papers, complete books,
etc.

email to authors

* relatively new math means authors are still alive, bonus!

32
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Specific Examples #3:
Constraints for IK

e compute “forces” to keep bones together
a =A f +b

a, : - relative acceleration

at constraint
f1 : force at constraint
b1 . external forces converted to
accelerations at constraints

A11 - force/acceleration relation matrix

34



Specific Examples #35:
Constraints for IK (cont.)

* multiple bodies gives coupling...

4 _ AL A, f1 N b1
LA,y Ay fz bz
a=Af+b

a = ( for rigid constraints

Af=-b, linear equations




