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First, a Word About Hammers

• requirements for this to be a good idea
• a way of transforming problems into nails (MLCPs)
• a hammer (Lemke’s algorithm)

• lots of advanced info + one hour = 
something has to give

• majority of lecture is motivating you to care about 
the hammer by showing you how useful nails can be

• make you hunger for more info post-lecture
• very little on how the hammer works in this hour

“If the only tool you have is a hammer, you tend 
to see every problem as a nail.”

Abraham Maslow
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Hammers (cont.)

• by definition, not the optimal way to solve 
problems, BUT
– computers are very fast these days
– often don’t care about optimality

• prepro, prototypes, tools, not a profile hotspot, etc.
– can always move to optimal solution after you 

verify it’s a problem you actually want to solve
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What are “advanced game math 
problems”?

• problems that are ammenable to 
mathematical modeling

• state the problem clearly
• state the desired solution clearly
• describe the problem with equations so a proposed 

solution’s quality is measurable
• figure out how to solve the equations

• why not hack it?
• I believe better modeling is the future of game 

technology development (consistency, not reality)
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Prerequisites

• linear algebra
• vector, matrix symbol manipulation at least

• calculus concepts
• what derivatives mean

• comfortable with math notation and 
concepts
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Overview of Lecture

• random assortment of example problems 
breifly mentioned

• 5 specific example problems in some depth
• including one that I ran into recently and how I 

solved it

• generalize the example models
• transform them all to MLCPs
• solve MLCPs with Lemke’s algorithm
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A Look Forward

• linear equations
Ax = b 

• linear inequalities
Ax >= b

• linear programming
min cTx
s.t.  Ax >= b, etc.

• quadratic programming
min ½ xTQx + cTx
s.t. Ax >= b
      Dx   = e

• linear complimentarity problem
a = Af + b
a >= 0, f >= 0
aifi = 0
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Applications to Games
graphics, physics, ai, even ui

• computational geometry
• visibility
• contact
• curve fitting
• constraints
• integration
• graph theory

• network flow
• economics
• site allocation
• game theory
• IK
• machine learning
• image processing
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Applications to Games (cont.)

• don’t forget...

– The Elastohydrodynamic Lubrication Problem

– Solving Optimal Ownership Structures
• “The two parties establish a relationship in which 

they exchange feed ingredients, q, and manure, m.”
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Specific Examples #1a: 
Ease Cubic Fitting

• warm up with an ease 
curve cubic
x(t)=at3+bt2+ct+d
x’(t)=3at2+2bt+c

• 4 unknowns a,b,c,d 
(DOFs) we get to set, we 
choose:
x(0) = 0, x(1) = 1
x’(0) = 0, x’(1) = 0

1

x

t0
0

1
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Specific Examples #1a: 
 Ease Cubic Fitting (cont.)

• x(t)=at3+bt2+ct+d,     x’(t)=3at2+2bt+c

• x(0) = a03+b02+c0+d    = d = 0
• x(1) = a13+b12+c1+d    = a+b+c+d = 1
• x’(0) = 3a02+2b0+c      = c = 0
• x’(1) = 3a12+2b1+c      = 3a + 2b + c = 0



12

Specific Examples #1a: 
 Ease Cubic Fitting (cont.)

• d = 0,  a+b+c+d = 1,  c = 0,  3a + 2b + c = 0

• a+b=1, 3a+2b=0
• a=1-b   =>   3(1-b)+2b = 3-3b+2b = 3-b = 0
• b=3, a=-2

• x(t) = 3t2 - 2t3 
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Specific Examples #1a: 
 Ease Cubic Fitting (cont.)

• or,
• x(0)  =                       d  = 0
• x(1)  =   a +   b + c + d  = 1
• x’(0) =                 c        = 0
• x’(1) = 3a + 2b + c        = 0

0   0   0   1
1   1   1   1
0   0   1   0
3   2   1   0

x(0)
x(1)
x’(0)
x’(1)

a
b
c
d

0
1
0
0

= =

Ax = b, a system of linear equations

(can solve for any rhs)
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Specific Examples #1b: 
Cubic Spline Fitting

• same technique to fit 
higher order polynomials, 
but they “wiggle”

• piecewise cubic is better
“natural cubic spline”

• xi(ti)=xi       xi(ti+1)=xi+1
x’i(ti) - x’i-1(ti) = 0
x’’i(ti) - x’’i-1(ti) = 0

• there is coupling between 
the splines, must solve 
simultaneously

x0 x1

x2
x3

t0
t1 t2 t3

• 4 DOF per spline
– 2 endpoint eqns per spline
– 4 derivative eqns for inside 

points
– 2 missing eqns = endpoint 

slopes
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Specific Examples #1b: 
Cubic Spline Fitting (cont.)

a0
b0
c0
d0
a1
b1
c1
d1...

x0
x1
0
0
x1
x2
0
0...

=

xi(ti)=xi       xi(ti+1)=xi+1
x’i(ti) - x’i-1(ti) = 0
x’’i(ti) - x’’i-1(ti) = 0

...

Ax = b, a 
system of 

linear equations
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Specific Examples #2: 
Minimum Cost Network Flow

• what is the cheapest flow 
route(s) from sources to sinks?

• model, want to minimize cost
cij = cost of i to j arc
bi = i’s supply/demand, sum(bi)=0
xij = quantity shipped on i to j arc
x*k = sum(xik) = flow into k
xk* = sum(xki) = flow out of k

• flow balance: x*k - xk* = -bk
• one-way streets: xij >= 0
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Specific Examples #2: 
Minimum Cost Network Flow (cont.)

• min cost: minimize cTx
• the sum of the costs times the 

quantities shipped (cTx = c ·x)
• flow balance is coupling: matrix

 x*k - xk* = -bk xac
xad
xae
xba
xbc
xbe
xdb...

= -

-1 -1 -1  1  0   0   0   0   1  0…
 0  0  0  -1 -1  -1  1 …
 ...

ba
bb
bc
bd
.
.
.

minimize cTx
subject to
            Ax = -b
              x >= 0
a linear 
programming 
problem
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Specific Examples #3: 
Points in Polys

• point in convex poly 
defined by planes
n1 · x >= d1
n2 · x >= d2
n3 · x >= d3

• farthest point in a 
direction in poly, c:

n1

n2

n3

xAx >= b, 
linear inequality

min -cTx
s.t.  Ax >= b
linear programming



19

Specific Examples #3: 
Points in Polys (cont.)

• closest point in two polys
min (x2-x1)

2

s.t.  A1x1 >= b1
       A2x2 >= b2

• stack ‘em in blocks, Ax >= b n1

n2

x1

n3

x2

x1
x2

x = A1 A2A =

what about (x2-x1)
2, how do we stack it?

b1
b2

b =
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Specific Examples #3: 
Points in Polys (cont.)

• how do we stack x1,x2 into single x given
(x2-x1)

2 = x2
2-2x2•x1+x1

2  

x1
x2x1

T
  x2

T
  1   -1
-1    1

= x2
2-2x2 

•
 x1+x1

2 = xTQx

min xTQx 
s.t.  Ax >= b

a quadratic programming problem

x2 = xTx = x · x
1 = identity matrix
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Specific Examples #3: 
Points in Polys (cont.)

• more points, more polys!
min (x2-x1)

2 + (x3-x2)
2 + (x3-x1)

2

x1
x2
x3

x1
T

  x2
T x3

T
 2   -1  -1
-1    2  -1
-1   -1   2

min xTQx 
s.t.  Ax >= b
another quadratic programming problem

• same form for all these poly problems
• never specified 2d, 3d, 4d, nd!

= xTQx
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Specific Examples #4: 
Contact

• model like IK constraints
a = Af + b
a >= 0,  no penetrating
f >= 0,  no pulling
aifi = 0, complementarity
             (can’t push if leaving)

f1 f2

a1 a2

f1
f2

a1 a2

linear complementarity problem

it’s a mixed LCP if some ai = 0, fi free, 
like for equality constraints
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Specific Examples #5: 
Joint Limits in CCD IK

• how to do child-child constraints in CCD?
• parent-child are easy, but need a way to couple 

two children to limit them relative to each other

• how to model this & handle all the cases?
• define dn= gn - an
• min (x1 - d1)

2 + (x2 - d2)
2

• s.t. c1min <= a1+x1 - a2-x2 <= c1max
• parent-child are easy in this framework: 

c2min <= a1+x1 <= c2max
• another quadratic program:

min xTQx 
s.t.  Ax >= b

a1

g1

a2

g2

a1

g1
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What Unifies These Examples?

• linear equations
Ax = b 

• linear inequalities
Ax >= b

• linear programming
min cTx
s.t.  Ax >= b, etc.

• quadratic programming
min ½ xTQx + cTx
s.t. Ax >= b
      Dx   = e

• linear complimentarity problem
a = Af + b
a >= 0, f >= 0
aifi = 0
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QP is a Superset of Most

• quadratic 
programming
min ½xTQx + cTx
s.t. Ax >= b
      Dx   = e

• linear equations
• Ax = b
• Q, c, A, b = 0

• linear inequalities
• Ax >= b
• Q, c, D, e = 0

• linear programming
• min cTx

s.t.  Ax >= b, etc.
• Q, etc. = 0

but MLCP is a superset 
of convex QP!
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Karush-Kuhn-Tucker Optimality 
Conditions get us to MLCP

• for QP
• form “Lagrangian”

L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e)
• for optimality (if convex):

∂L/ ∂x = 0
Ax - b >= 0
Dx - e   = 0
u >= 0    ui(Ax-b)i = 0
– this is related to basic calculus min/max f’(x) = 0 solve

min ½ xTQx + cTx
s.t. Ax - b >= 0
      Dx - e   = 0
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Karush-Kuhn-Tucker Optimality 
Conditions (cont.)

• L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e)

•  y  = ∂L/ ∂x = Qx + c - ATu - DTv = 0,  x free
•  w = Ax - b >= 0,   u >= 0,  wiui = 0
•  s  = Dx - e    = 0,   v  free

x
v
u

Q   -DT  -AT

D     0     0
A     0     0

=

y
s
w

+

c
-e
-b

y, s = 0
x, v free
w, u >= 0
wiui = 0
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This is an MLCP
x
v
u

Q   -DT  -AT

D     0     0
A     0     0

=

y
s
w

+

c
-e
-b

y, s = 0
x, v free
w, u >= 0
wiui = 0

a = A f b+

aifi = 0 some a >= 0, some = 0
some f >= 0, some free
(but they correspond so complementarity holds)
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Modeling Summary

• a lot of interesting problems can be 
formulated as MLCPs
– model the problem mathematically
– transform it to an MLCP

– on paper or in code with wrappers

– but what about solving MLCPs?
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Solving MLCPs
(where I hope I made you hungry enough for homework)

• Lemke’s Algorithm is only about 2x as 
complicated as Gaussian Elimination

• Lemke will solve LCPs, which some of 
these problems transform into

• then, doing an “advanced start” to handle 
the free variables gives you an MLCP 
solver, which is just a bit more code over 
plain Lemke’s Algorithm
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Playing Around With MLCPs

• PATH, a MCP solver (superset of MLCP!)
• really stoked professional solver
• free version for “small” problems
• matlab or C

• OMatrix (Matlab clone) free trial (omatrix.com)
• only LCPs, but Lemke source is in trial

» not a great version, but it’s really small (two pages of code) 
and quite useful for learning, with debug output

» good place to test out “advanced starts”

• my Lemke’s + advanced start code
• not great, but I’m happy to share it
• it’s in Objective Caml :)
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References for Lemke, etc.

• free pdf book by Katta Murty on LCPs, etc.
• free pdf book by Vanderbei on LPs
• The LCP, Cottle, Pang, Stone
• Practical Optimization, Fletcher
• web has tons of material, papers, complete books, 

etc.
• email to authors

• relatively new math means authors are still alive, bonus!
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Specific Examples #5: 
Constraints for IK

• compute “forces” to keep bones together
a1 = A11 f1 + b1
a1 : relative acceleration 
      at constraint
f1 : force at constraint
b1 : external forces converted to
      accelerations at constraints
A11 : force/acceleration relation matrix

f1fe
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Specific Examples #5: 
Constraints for IK (cont.)

• multiple bodies gives coupling...
a1
a2

A11  A12
A21  A22

f1
f2

b1
b2

= +

f1 f2
fe

a = Af + b
a = 0 for rigid constraints

Af = -b, linear equations


