Lemke's Algorithm: The Hammer in Your Math Toolbox?

Chris Hecker definition six, inc. checker@d6.com

First, a Word About Hammers

"If the only tool you have is a hammer, you tend to see every problem as a nail."

Abraham Maslow

- requirements for this to be a good idea
- a way of transforming problems into nails (MLCPs)
- a hammer (Lemke's algorithm)
- lots of advanced info + one hour = something has to give
- majority of lecture is motivating you to care about the hammer by showing you how useful nails can be
- make you hunger for more info post-lecture
- very little on how the hammer works in this hour

Hammers (cont.)

- by definition, not the optimal way to solve problems, BUT
- computers are very fast these days
- often don't care about optimality
- prepro, prototypes, tools, not a profile hotspot, etc.
- can always move to optimal solution after you verify it's a problem you actually want to solve

What are "advanced game math problems"?

- problems that are ammenable to mathematical modeling
- state the problem clearly
- state the desired solution clearly
- describe the problem with equations so a proposed solution's quality is measurable
- figure out how to solve the equations
- why not hack it?
- I believe better modeling is the future of game technology development (consistency, not reality)

Prerequisites

- linear algebra
- vector, matrix symbol manipulation at least
- calculus concepts
- what derivatives mean
- comfortable with math notation and concepts

Overview of Lecture

- random assortment of example problems breifly mentioned
- 5 specific example problems in some depth
- including one that I ran into recently and how I solved it
- generalize the example models
- transform them all to MLCPs
- solve MLCPs with Lemke's algorithm

A Look Forward

- linear equations
$\mathrm{Ax}=\mathrm{b}$
- linear inequalities

$$
\mathrm{Ax}>=\mathrm{b}
$$

- linear programming $\min c^{T} x$
s.t. $A x>=b$, etc.
- quadratic programming $\min 1 / 2 \mathrm{X}^{\mathrm{T}} \mathrm{Qx}+\mathrm{c}^{\mathrm{T}} \mathrm{X}$
s.t. $A x>=b$

$$
D x=e
$$

- linear complimentarity problem $\mathrm{a}=\mathrm{Af}+\mathrm{b}$ $\mathrm{a}>=0, \mathrm{f}>=0$ $\mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=0$

Applications to Games graphics, physics, ai, even ui

- computational geometry
- visibility
- contact
- curve fitting
- constraints
- integration
- graph theory
- network flow
- economics
- site allocation
- game theory
- IK
- machine learning
- image processing

Applications to Games (cont.)

- don't forget...
- The Elastohydrodynamic Lubrication Problem
- Solving Optimal Ownership Structures
- "The two parties establish a relationship in which they exchange feed ingredients, q , and manure, m."

Specific Examples \#1a: Ease Cubic Fitting

- warm up with an ease curve cubic
$x(t)=a t^{3}+b t^{2}+c t+d$
$x^{\prime}(t)=3 a t^{2}+2 b t+c$

- 4 unknowns a,b,c,d
(DOFs) we get to set, we choose:
$x(0)=0, x(1)=1$
$x^{\prime}(0)=0, x^{\prime}(1)=0$

Specific Examples \#1a:
 Ease Cubic Fitting (cont.)

- $x(t)=a t^{3}+b t^{2}+c t+d, \quad x^{\prime}(t)=3 a t^{2}+2 b t+c$
- $x(0)=a 0^{3}+b 0^{2}+c 0+d=d=0$
- $x(1)=a 1^{3}+b 1^{2}+c 1+d=a+b+c+d=1$
- $x^{\prime}(0)=3 a 0^{2}+2 b 0+c=c=0$
- $\mathrm{x}^{\prime}(1)=3 \mathrm{a} 1^{2}+2 \mathrm{~b} 1+\mathrm{c}=3 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=0$

Specific Examples \#1a:
 Ease Cubic Fitting (cont.)

- $\mathrm{d}=0, \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=1, \mathrm{c}=0,3 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=0$
- $a+b=1,3 a+2 b=0$
- $a=1-b \Rightarrow 3(1-b)+2 b=3-3 b+2 b=3-b=0$
- $b=3, a=-2$
- $x(t)=3 t^{2}-2 t^{3}$

Specific Examples \#1a: Ease Cubic Fitting (cont.)

- Or,
- $\mathrm{x}(0)=\quad \mathrm{d}=0$
- $x(1)=a+b+c+d=1$
- $\mathrm{x}^{\prime}(0)=\mathrm{c}=0$
- $x^{\prime}(1)=3 a+2 b+c=0$
$\left|\begin{array}{c}\mathrm{x}(0) \\ \mathrm{x}(1) \\ \mathrm{x}^{\prime}(0) \\ \mathrm{x}^{\prime}(1)\end{array}\right|=\left|\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}\right|\left|\begin{array}{c}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right|=\left|\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right| \quad$ (can solve for any rhs)
$\mathrm{Ax}=\mathrm{b}, \mathrm{a}$ system of linear equations

Specific Examples \#1b: Cubic Spline Fitting

- same technique to fit higher order polynomials, but they "wiggle"
- piecewise cubic is better "natural cubic spline"
- $x_{i}\left(t_{i}\right)=x_{i} \quad x_{i}\left(t_{i+1}\right)=x_{i+1}$
$x_{i}^{\prime}\left(t_{i}\right)-x_{i-1}^{\prime}\left(t_{i}\right)=0$
$\mathrm{x}^{\prime \prime}{ }_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}\right)-\mathrm{x}{ }_{\mathrm{i}-1}\left(\mathrm{t}_{\mathrm{i}}\right)=0$
- there is coupling between the splines, must solve simultaneously

- 4 DOF per spline
- 2 endpoint eqns per spline
- 4 derivative eqns for inside points
- 2 missing eqns $=$ endpoint slopes

Specific Examples \#1b: Cubic Spline Fitting (cont.)

$$
\begin{aligned}
& x_{i}\left(t_{i}\right)=x_{i} \quad x_{i}\left(t_{i+1}\right)=x_{i+1} \\
& \left.x_{i}^{\prime}{ }_{i} t_{i}\right)-x_{i-1}^{\prime}\left(t_{i}\right)=0 \\
& x^{\prime \prime}{ }_{i}\left(t_{i}\right)-x_{i-1}{ }_{i-1}\left(t_{i}\right)=0
\end{aligned}
$$

Specific Examples \#2: Minimum Cost Network Flow

- what is the cheapest flow route(s) from sources to sinks?
- model, want to minimize cost $c_{i j}=$ cost of ito j arc
$\mathrm{b}_{\mathrm{i}}=\mathrm{i}$'s supply/demand, $\operatorname{sum}\left(\mathrm{b}_{\mathrm{i}}\right)=0$
$\mathrm{x}_{\mathrm{ij}}=$ quantity shipped on i to j arc
$\mathrm{X}_{\text {wh }}=\operatorname{sum}\left(\mathrm{X}_{\mathrm{ik}}\right)=$ flow into k
$x_{k^{*}}=\operatorname{sum}\left(x_{k i}\right)=$ flow out of k
- flow balance: $\mathrm{x}_{\text {*k }}-\mathrm{x}_{\mathrm{k}^{*}}=-\mathrm{b}_{\mathrm{k}}$
- one-way streets: $\mathrm{x}_{\mathrm{ij}}>=0$

Specific Examples \#2: Minimum Cost Network Flow (cont.)

- min cost: minimize $\mathrm{c}^{\mathrm{T}} \mathrm{X}$
- the sum of the costs times the quantities shipped $\left(\mathrm{c}^{\mathrm{T}} \mathrm{x}=\mathrm{c} \cdot \mathrm{x}\right)$
- flow balance is coupling: matrix $\mathrm{x}_{\text {* }_{\mathrm{k}}}-\mathrm{x}_{\mathrm{k}^{*}}=-\mathrm{b}_{\mathrm{k}}$
$\left|\begin{array}{cccccccccc}-1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

$\left\|\begin{array}{l} \mathrm{x}_{\mathrm{ac}} \\ \mathrm{x}_{\mathrm{ad}} \\ \mathrm{x}_{\mathrm{ae}} \\ \mathrm{x}_{\mathrm{ba}} \\ \mathrm{x}_{\mathrm{bc}} \\ \mathrm{x}_{\mathrm{be}} \\ \mathrm{x}_{\mathrm{db}} \end{array}\right\|$	$=-\left\lvert\, \begin{aligned} & \mathrm{b}_{\mathrm{a}} \\ & \mathrm{~b}_{\mathrm{b}} \\ & \mathrm{~b}_{\mathrm{c}} \\ & \mathrm{~b}_{\mathrm{d}} \end{aligned}\right.$	$\begin{aligned} & \text { minimize } c^{T} \mathrm{x} \\ & \text { subject to } \\ & \qquad \mathrm{Ax}=-\mathrm{b} \\ & \qquad \mathrm{x}>=0 \\ & \text { a linear } \\ & \text { programming } \\ & \text { pindem } \end{aligned}$

Specific Examples \#3: Points in Polys

- point in convex poly defined by planes

$$
\begin{aligned}
& \mathrm{n}_{1} \cdot \mathrm{x}>=\mathrm{d}_{1} \\
& \mathrm{n}_{2} \cdot \mathrm{x}>=\mathrm{d}_{2} \\
& \mathrm{n}_{3} \cdot \mathrm{x}>=\mathrm{d}_{3}
\end{aligned}
$$

$$
\mathrm{Ax}>=\mathrm{b},
$$

linear inequality

- farthest point in a direction in poly, c:
$\min -c^{T} x$
s.t. $A x>=b$
linear programming 18

Specific Examples \#3: Points in Polys (cont.)

- closest point in two polys $\min \left(x_{2}-x_{1}\right)^{2}$
s.t. $A_{1} \mathrm{x}_{1}>=\mathrm{b}_{1}$ $A_{2} x_{2}>=b_{2}$
- stack 'em in blocks, $\mathrm{Ax}>=\mathrm{b}$

$$
\mathrm{x}=\left|\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right| \quad \mathrm{b}=\left|\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2}
\end{array}\right| \quad \mathrm{A}=\left|\mathrm{A}_{1} \mathrm{~A}_{2}\right|
$$

what about $\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}$, how do we stack it?

Specific Examples \#3: Points in Polys (cont.)

- how do we stack x_{1}, x_{2} into single x given $\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}=\mathrm{x}_{2}{ }^{2}-2 \mathrm{x}_{2} \cdot \mathrm{x}_{1}+\mathrm{x}_{1}{ }^{2}$

$$
\left|x_{1}{ }^{T} x_{2}^{T}\right|\left|\begin{array}{rc}
1 & -1 \\
-1 & 1
\end{array}\right|\left|\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right|=x_{2}^{2}-2 x_{2} \cdot x_{1}+x_{1}^{2}=x^{T} Q x
$$

$\min x^{T} Q x$
$\mathrm{x}^{2}=\mathrm{x}^{\mathrm{T}} \mathrm{x}=\mathrm{x} \cdot \mathrm{x}$
s.t. $A x>=b$
a quadratic programming problem

Specific Examples \#3: Points in Polys (cont.)

- more points, more polys! $\min \left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)^{2}+\left(\mathrm{x}_{3}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{X}_{3}-\mathrm{X}_{1}\right)^{2}$
$\left|x_{1}{ }^{T} x_{2}{ }^{T} x_{3}{ }^{\mathrm{T}}\right| \begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\left|\left|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right|=x^{T} Q x\right.$
$\min x^{T} Q x$
s.t. $A x>=b$
another quadratic programming problem
- same form for all these poly problems
- never specified 2d, 3d, 4d, nd! 21

Specific Examples \#4: Contact

- model like IK constraints $\mathrm{a}=\mathrm{Af}+\mathrm{b}$ $\mathrm{a}>=0$, no penetrating $\mathrm{f}>=0$, no pulling $\mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=0$, complementarity $\mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=0$, complementarity
linear complementarity problem
it's a mixed LCP if some $\mathrm{a}_{\mathrm{i}}=0, \mathrm{f}_{\mathrm{i}}$ free, like for equality constraints

Specific Examples \#5: Joint Limits in CCD IK

- how to do child-child constraints in CCD?
- parent-child are easy, but need a way to couple two children to limit them relative to each other
- how to model this \& handle all the cases?
- define $d_{n}=g_{n}-a_{n}$

- $\min \left(\mathrm{x}_{1}-\mathrm{d}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{d}_{2}\right)^{2}$
- s.t. $\mathrm{c}_{1 \text { min }}<=\mathrm{a}_{1}+\mathrm{x}_{1}-\mathrm{a}_{2}-\mathrm{x}_{2}<=\mathrm{c}_{1 \text { max }}$
- parent-child are easy in this framework:

$$
\mathrm{c}_{2 \min }<=\mathrm{a}_{1}+\mathrm{x}_{1}<=\mathrm{c}_{2 \max }
$$

- another quadratic program: $\min x^{T} Q x$

s.t. $A x>=\mathrm{b}$

23

What Unifies These Examples?

- linear equations
$\mathrm{Ax}=\mathrm{b}$
- linear inequalities

Ax $>=\mathrm{b}$

- linear programming $\min c^{T} \mathrm{X}$
s.t. $A x>=b$, etc.
- quadratic programming $\min 1 / 2 \mathrm{X}^{\mathrm{T}} \mathrm{Qx}+\mathrm{c}^{\mathrm{T}} \mathrm{X}$

$$
\text { s.t. } A x>=b
$$

$$
\mathrm{Dx}=\mathrm{e}
$$

- linear complimentarity problem
$\mathrm{a}=\mathrm{Af}+\mathrm{b}$
$\mathrm{a}>=0, \mathrm{f}>=0$
$\mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=0$

QP is a Superset of Most

- quadratic
programming
$\min 1 / 2 \mathrm{X}^{\mathrm{T}} \mathrm{Qx}+\mathrm{c}^{\mathrm{T}} \mathrm{x}$
s.t. $A x>=b$

$$
\mathrm{Dx}=\mathrm{e}
$$

- linear equations
- $\mathrm{Ax}=\mathrm{b}$
- $\mathrm{Q}, \mathrm{c}, \mathrm{A}, \mathrm{b}=0$
- linear inequalities
- $A x>=b$
- $\mathrm{Q}, \mathrm{c}, \mathrm{D}, \mathrm{e}=0$
- linear programming
- $\min c^{T} x$ s.t. $\mathrm{Ax}>=\mathrm{b}$, etc.
- Q , etc. $=0$
but MLCP is a superset of convex QP!

Karush-Kuhn-Tucker Optimality Conditions get us to MLCP

- for QP $\min { }^{1 / 2} X^{T} Q x+c^{T} x$ s.t. $\mathrm{Ax}-\mathrm{b}>=0$
- form "Lagrangian"

$$
\mathrm{Dx}-\mathrm{e}=0
$$

$$
\mathrm{L}(\mathrm{x}, \mathrm{u}, \mathrm{v})=1 / 2 \mathrm{x}^{\mathrm{T}} \mathrm{Q} \mathrm{x}+\mathrm{c}^{\mathrm{T}} \mathrm{x}-\mathrm{u}^{\mathrm{T}}(\mathrm{Ax}-\mathrm{b})-\mathrm{v}^{\mathrm{T}}(\mathrm{Dx}-\mathrm{e})
$$

- for optimality (if convex):
$\partial \mathrm{L} / \partial \mathrm{x}=0$
$\mathrm{Ax}-\mathrm{b}>=0$
$D \mathrm{x}-\mathrm{e}=0$
$u>=0 \quad u_{i}(A x-b)_{i}=0$
- this is related to basic calculus $\min / \max f^{\prime}(x)=0$ solve 26

Karush-Kuhn-Tucker Optimality Conditions (cont.)

- $L(x, u, v)=1 / 2 x^{T} Q x+c^{T} x-u^{T}(A x-b)-v^{T}(D x-e)$
- $y=\partial L / \partial x=Q x+c-A^{T} u-D^{T} v=0$, x free
- $w=A x-b>=0, u>=0, w_{i} u_{i}=0$
- $\mathrm{s}=\mathrm{Dx}-\mathrm{e}=0, \mathrm{v}$ free

$$
\left|\begin{array}{c}
\mathrm{y} \\
\mathrm{~s} \\
\mathrm{w}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{Q} & -\mathrm{D}^{\mathrm{T}} & -\mathrm{A}^{\mathrm{T}} \\
\mathrm{D} & 0 & 0 \\
\mathrm{~A} & 0 & 0
\end{array}\right|\left|\begin{array}{l}
\mathrm{x} \\
\mathrm{v} \\
\mathrm{u}
\end{array}\right|+\left|\begin{array}{c}
\mathrm{c} \\
-\mathrm{e} \\
-\mathrm{b}
\end{array}\right| \quad \begin{aligned}
& \mathrm{y}, \mathrm{~s}=0 \\
& \mathrm{x}, \mathrm{v} \text { free } \\
& \mathrm{w}, \mathrm{u}>=0 \\
& \mathrm{w}_{\mathrm{i}} \mathbf{u}_{\mathrm{i}}=0
\end{aligned}
$$

This is an MLCP

$$
\left.\begin{aligned}
& \left|\begin{array}{c}
\mathrm{y} \\
\mathrm{~s} \\
\mathrm{w}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{Q} & -\mathrm{D}^{\mathrm{T}} & -\mathrm{A}^{\mathrm{T}} \\
\mathrm{D} & 0 & 0 \\
\mathrm{~A} & 0 & 0
\end{array}\right|\left|\begin{array}{l}
\mathrm{x} \\
\mathrm{v} \\
\mathrm{u}
\end{array}\right|+\left|\begin{array}{c}
\mathrm{c} \\
-\mathrm{e} \\
-\mathrm{b}
\end{array}\right|
\end{aligned} \begin{aligned}
& \mathrm{y}, \mathrm{~s}=0 \\
& \mathrm{x}, \mathrm{v} \text { free } \\
& \mathrm{w}, \mathrm{u}>=0 \\
& \mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=0
\end{aligned} \right\rvert\, \begin{aligned}
& \mathrm{A} \quad \mathrm{f}+\begin{array}{l}
\mathrm{b}
\end{array} \\
& \mathrm{a}=\quad \begin{array}{l}
\text { some } \mathrm{a}>=0, \text { some }=0 \\
\text { some } \mathrm{f}>=0, \text { some free } \\
\text { (but they correspond so complementarity holds) }
\end{array} \\
& \mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=0
\end{aligned}
$$

Modeling Summary

- a lot of interesting problems can be formulated as MLCPs
- model the problem mathematically
- transform it to an MLCP
- on paper or in code with wrappers
- but what about solving MLCPs?

Solving MLCPs

(where I hope I made you hungry enough for homework)

- Lemke's Algorithm is only about 2 x as complicated as Gaussian Elimination
- Lemke will solve LCPs, which some of these problems transform into
- then, doing an "advanced start" to handle the free variables gives you an MLCP solver, which is just a bit more code over plain Lemke's Algorithm

Playing Around With MLCPs

- PATH, a MCP solver (superset of MLCP!)
- really stoked professional solver
- free version for "small" problems
- matlab or C
- OMatrix (Matlab clone) free trial (omatrix.com)
- only LCPs, but Lemke source is in trial
» not a great version, but it's really small (two pages of code) and quite useful for learning, with debug output
» good place to test out "advanced starts"
- my Lemke's + advanced start code
- not great, but I'm happy to share it
- it's in Objective Caml :)

References for Lemke, etc.

- free pdf book by Katta Murty on LCPs, etc.
- free pdf book by Vanderbei on LPs
- The LCP, Cottle, Pang, Stone
- Practical Optimization, Fletcher
- web has tons of material, papers, complete books, etc.
- email to authors
- relatively new math means authors are still alive, bonus!
33

Specific Examples \#5: Constraints for IK

- compute "forces" to keep bones together $\mathrm{a}_{1}=\mathrm{A}_{11} \mathrm{f}_{1}+\mathrm{b}_{1}$
a_{1} : relative acceleration at constraint
f_{1} : force at constraint

b_{1} : external forces converted to accelerations at constraints
A_{11} : force/acceleration relation matrix

Specific Examples \#5: Constraints for IK (cont.)

- multiple bodies gives coupling...

$$
\begin{aligned}
& \left|\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right|=\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|\left|\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right|+\left|\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right| \\
& \mathrm{a}=\mathrm{Af}+\mathrm{b} \\
& \mathrm{a}=0 \text { for rigid constraints }
\end{aligned}
$$

$\mathrm{Af}=-\mathrm{b}$, linear equations

