
1

Lemke’s Algorithm:
The Hammer in Your Math Toolbox?

Chris Hecker
definition six, inc.
checker@d6.com

2

First, a Word About Hammers

• requirements for this to be a good idea
• a way of transforming problems into nails (MLCPs)
• a hammer (Lemke’s algorithm)

• lots of advanced info + one hour =
something has to give

• majority of lecture is motivating you to care about
the hammer by showing you how useful nails can be

• make you hunger for more info post-lecture
• very little on how the hammer works in this hour

“If the only tool you have is a hammer, you tend
to see every problem as a nail.”

Abraham Maslow

3

Hammers (cont.)

• by definition, not the optimal way to solve
problems, BUT
– computers are very fast these days
– often don’t care about optimality

• prepro, prototypes, tools, not a profile hotspot, etc.
– can always move to optimal solution after you

verify it’s a problem you actually want to solve

4

What are “advanced game math
problems”?

• problems that are ammenable to
mathematical modeling

• state the problem clearly
• state the desired solution clearly
• describe the problem with equations so a proposed

solution’s quality is measurable
• figure out how to solve the equations

• why not hack it?
• I believe better modeling is the future of game

technology development (consistency, not reality)

5

Prerequisites

• linear algebra
• vector, matrix symbol manipulation at least

• calculus concepts
• what derivatives mean

• comfortable with math notation and
concepts

6

Overview of Lecture

• random assortment of example problems
breifly mentioned

• 5 specific example problems in some depth
• including one that I ran into recently and how I

solved it

• generalize the example models
• transform them all to MLCPs
• solve MLCPs with Lemke’s algorithm

7

A Look Forward

• linear equations
Ax = b

• linear inequalities
Ax >= b

• linear programming
min cTx
s.t. Ax >= b, etc.

• quadratic programming
min ½ xTQx + cTx
s.t. Ax >= b
 Dx = e

• linear complimentarity problem
a = Af + b
a >= 0, f >= 0
aifi = 0

8

Applications to Games
graphics, physics, ai, even ui

• computational geometry
• visibility
• contact
• curve fitting
• constraints
• integration
• graph theory

• network flow
• economics
• site allocation
• game theory
• IK
• machine learning
• image processing

9

Applications to Games (cont.)

• don’t forget...

– The Elastohydrodynamic Lubrication Problem

– Solving Optimal Ownership Structures
• “The two parties establish a relationship in which

they exchange feed ingredients, q, and manure, m.”

10

Specific Examples #1a:
Ease Cubic Fitting

• warm up with an ease
curve cubic
x(t)=at3+bt2+ct+d
x’(t)=3at2+2bt+c

• 4 unknowns a,b,c,d
(DOFs) we get to set, we
choose:
x(0) = 0, x(1) = 1
x’(0) = 0, x’(1) = 0

1

x

t0
0

1

11

Specific Examples #1a:
 Ease Cubic Fitting (cont.)

• x(t)=at3+bt2+ct+d, x’(t)=3at2+2bt+c

• x(0) = a03+b02+c0+d = d = 0
• x(1) = a13+b12+c1+d = a+b+c+d = 1
• x’(0) = 3a02+2b0+c = c = 0
• x’(1) = 3a12+2b1+c = 3a + 2b + c = 0

12

Specific Examples #1a:
 Ease Cubic Fitting (cont.)

• d = 0, a+b+c+d = 1, c = 0, 3a + 2b + c = 0

• a+b=1, 3a+2b=0
• a=1-b => 3(1-b)+2b = 3-3b+2b = 3-b = 0
• b=3, a=-2

• x(t) = 3t2 - 2t3

13

Specific Examples #1a:
 Ease Cubic Fitting (cont.)

• or,
• x(0) = d = 0
• x(1) = a + b + c + d = 1
• x’(0) = c = 0
• x’(1) = 3a + 2b + c = 0

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

x(0)
x(1)
x’(0)
x’(1)

a
b
c
d

0
1
0
0

= =

Ax = b, a system of linear equations

(can solve for any rhs)

14

Specific Examples #1b:
Cubic Spline Fitting

• same technique to fit
higher order polynomials,
but they “wiggle”

• piecewise cubic is better
“natural cubic spline”

• xi(ti)=xi xi(ti+1)=xi+1
x’i(ti) - x’i-1(ti) = 0
x’’i(ti) - x’’i-1(ti) = 0

• there is coupling between
the splines, must solve
simultaneously

x0 x1

x2
x3

t0
t1 t2 t3

• 4 DOF per spline
– 2 endpoint eqns per spline
– 4 derivative eqns for inside

points
– 2 missing eqns = endpoint

slopes

15

Specific Examples #1b:
Cubic Spline Fitting (cont.)

a0
b0
c0
d0
a1
b1
c1
d1...

x0
x1
0
0
x1
x2
0
0...

=

xi(ti)=xi xi(ti+1)=xi+1
x’i(ti) - x’i-1(ti) = 0
x’’i(ti) - x’’i-1(ti) = 0

...

Ax = b, a
system of

linear equations

16

Specific Examples #2:
Minimum Cost Network Flow

• what is the cheapest flow
route(s) from sources to sinks?

• model, want to minimize cost
cij = cost of i to j arc
bi = i’s supply/demand, sum(bi)=0
xij = quantity shipped on i to j arc
x*k = sum(xik) = flow into k
xk* = sum(xki) = flow out of k

• flow balance: x*k - xk* = -bk
• one-way streets: xij >= 0

17

Specific Examples #2:
Minimum Cost Network Flow (cont.)

• min cost: minimize cTx
• the sum of the costs times the

quantities shipped (cTx = c ·x)
• flow balance is coupling: matrix

 x*k - xk* = -bk xac
xad
xae
xba
xbc
xbe
xdb...

= -

-1 -1 -1 1 0 0 0 0 1 0…
 0 0 0 -1 -1 -1 1 …
 ...

ba
bb
bc
bd
.
.
.

minimize cTx
subject to
 Ax = -b
 x >= 0
a linear
programming
problem

18

Specific Examples #3:
Points in Polys

• point in convex poly
defined by planes
n1 · x >= d1
n2 · x >= d2
n3 · x >= d3

• farthest point in a
direction in poly, c:

n1

n2

n3

xAx >= b,
linear inequality

min -cTx
s.t. Ax >= b
linear programming

19

Specific Examples #3:
Points in Polys (cont.)

• closest point in two polys
min (x2-x1)

2

s.t. A1x1 >= b1
 A2x2 >= b2

• stack ‘em in blocks, Ax >= b n1

n2

x1

n3

x2

x1
x2

x = A1 A2A =

what about (x2-x1)
2, how do we stack it?

b1
b2

b =

20

Specific Examples #3:
Points in Polys (cont.)

• how do we stack x1,x2 into single x given
(x2-x1)

2 = x2
2-2x2•x1+x1

2

x1
x2x1

T
 x2

T
 1 -1
-1 1

= x2
2-2x2

•
 x1+x1

2 = xTQx

min xTQx
s.t. Ax >= b

a quadratic programming problem

x2 = xTx = x · x
1 = identity matrix

21

Specific Examples #3:
Points in Polys (cont.)

• more points, more polys!
min (x2-x1)

2 + (x3-x2)
2 + (x3-x1)

2

x1
x2
x3

x1
T

 x2
T x3

T
 2 -1 -1
-1 2 -1
-1 -1 2

min xTQx
s.t. Ax >= b
another quadratic programming problem

• same form for all these poly problems
• never specified 2d, 3d, 4d, nd!

= xTQx

22

Specific Examples #4:
Contact

• model like IK constraints
a = Af + b
a >= 0, no penetrating
f >= 0, no pulling
aifi = 0, complementarity
 (can’t push if leaving)

f1 f2

a1 a2

f1
f2

a1 a2

linear complementarity problem

it’s a mixed LCP if some ai = 0, fi free,
like for equality constraints

23

Specific Examples #5:
Joint Limits in CCD IK

• how to do child-child constraints in CCD?
• parent-child are easy, but need a way to couple

two children to limit them relative to each other

• how to model this & handle all the cases?
• define dn= gn - an
• min (x1 - d1)

2 + (x2 - d2)
2

• s.t. c1min <= a1+x1 - a2-x2 <= c1max
• parent-child are easy in this framework:

c2min <= a1+x1 <= c2max
• another quadratic program:

min xTQx
s.t. Ax >= b

a1

g1

a2

g2

a1

g1

24

What Unifies These Examples?

• linear equations
Ax = b

• linear inequalities
Ax >= b

• linear programming
min cTx
s.t. Ax >= b, etc.

• quadratic programming
min ½ xTQx + cTx
s.t. Ax >= b
 Dx = e

• linear complimentarity problem
a = Af + b
a >= 0, f >= 0
aifi = 0

25

QP is a Superset of Most

• quadratic
programming
min ½xTQx + cTx
s.t. Ax >= b
 Dx = e

• linear equations
• Ax = b
• Q, c, A, b = 0

• linear inequalities
• Ax >= b
• Q, c, D, e = 0

• linear programming
• min cTx

s.t. Ax >= b, etc.
• Q, etc. = 0

but MLCP is a superset
of convex QP!

26

Karush-Kuhn-Tucker Optimality
Conditions get us to MLCP

• for QP
• form “Lagrangian”

L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e)
• for optimality (if convex):

∂L/ ∂x = 0
Ax - b >= 0
Dx - e = 0
u >= 0 ui(Ax-b)i = 0
– this is related to basic calculus min/max f’(x) = 0 solve

min ½ xTQx + cTx
s.t. Ax - b >= 0
 Dx - e = 0

27

Karush-Kuhn-Tucker Optimality
Conditions (cont.)

• L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e)

• y = ∂L/ ∂x = Qx + c - ATu - DTv = 0, x free
• w = Ax - b >= 0, u >= 0, wiui = 0
• s = Dx - e = 0, v free

x
v
u

Q -DT -AT

D 0 0
A 0 0

=

y
s
w

+

c
-e
-b

y, s = 0
x, v free
w, u >= 0
wiui = 0

28

This is an MLCP
x
v
u

Q -DT -AT

D 0 0
A 0 0

=

y
s
w

+

c
-e
-b

y, s = 0
x, v free
w, u >= 0
wiui = 0

a = A f b+

aifi = 0 some a >= 0, some = 0
some f >= 0, some free
(but they correspond so complementarity holds)

29

Modeling Summary

• a lot of interesting problems can be
formulated as MLCPs
– model the problem mathematically
– transform it to an MLCP

– on paper or in code with wrappers

– but what about solving MLCPs?

30

Solving MLCPs
(where I hope I made you hungry enough for homework)

• Lemke’s Algorithm is only about 2x as
complicated as Gaussian Elimination

• Lemke will solve LCPs, which some of
these problems transform into

• then, doing an “advanced start” to handle
the free variables gives you an MLCP
solver, which is just a bit more code over
plain Lemke’s Algorithm

31

Playing Around With MLCPs

• PATH, a MCP solver (superset of MLCP!)
• really stoked professional solver
• free version for “small” problems
• matlab or C

• OMatrix (Matlab clone) free trial (omatrix.com)
• only LCPs, but Lemke source is in trial

» not a great version, but it’s really small (two pages of code)
and quite useful for learning, with debug output

» good place to test out “advanced starts”

• my Lemke’s + advanced start code
• not great, but I’m happy to share it
• it’s in Objective Caml :)

32

References for Lemke, etc.

• free pdf book by Katta Murty on LCPs, etc.
• free pdf book by Vanderbei on LPs
• The LCP, Cottle, Pang, Stone
• Practical Optimization, Fletcher
• web has tons of material, papers, complete books,

etc.
• email to authors

• relatively new math means authors are still alive, bonus!

33

34

Specific Examples #5:
Constraints for IK

• compute “forces” to keep bones together
a1 = A11 f1 + b1
a1 : relative acceleration
 at constraint
f1 : force at constraint
b1 : external forces converted to
 accelerations at constraints
A11 : force/acceleration relation matrix

f1fe

35

Specific Examples #5:
Constraints for IK (cont.)

• multiple bodies gives coupling...
a1
a2

A11 A12
A21 A22

f1
f2

b1
b2

= +

f1 f2
fe

a = Af + b
a = 0 for rigid constraints

Af = -b, linear equations

