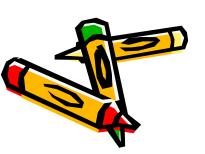


- 1. Первообразная
- 1.1. Определение первообразной
- 1.2. Основное свойство первообразной
- 1.3. Три правила нахождения первообразной
- 1.6. Таблица
- 2. Интеграл
- 2.1. Площадь криволинейной трапеции
- 2.2. Интеграл. Формула Ньютона Лейбница



1. Первообразная

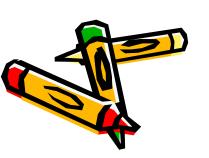
- 1.1. Определение первообразной
- Определение: Функция F называется первообразной для функции f на заданном промежутке, если для всех х из этого промежутка

$$\cdot F'(x) = f(x)$$

1.2 основное свойство первообразной

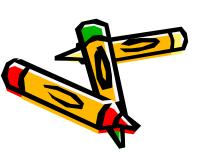
- общий вид первообразных. Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные.
- Признак постоянства функции. Если F'(x) = 0 на некотором промежутке I, то функция F постоянна на этом промежутке.
- Доказапельство. Зафиксируем некоторое x_0 из промежутка I. Тогда для любого числа x из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между x и x_0 , что
- $F(x)-F'(c) = F'(c)(x-x_0).$
- По условию F'(c)=0, так как **с I**, следовательно,
- $F(x)-F(x_0)=0.$
- Итак, для всех х из промежутка **I**
- $F(x) = F(x_0),$
- т.е. функция **F** сохраняет постоянное значение.

(продолжение следует)



Основное свойство первообразной...

- Все первообразные функции **f** можно записать с помощью одной формулы, которую называют общим видом первообразных для ф ункции **f**. Справедлива следующая теорема (основное свойство первообразных):
- Теорема. Любая первообразная для ф ункции f на промежутке I может быть записана в виде
 F(x) + C,
- Где F(x) одна из первообразных для ф ункции f(x) на промежутке I, а C произвольная постоянная.

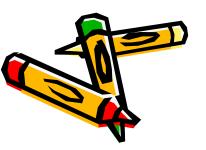


Основное свойство первообразной

- Свойства первообразных
- 1) какое бы число ни поставить в выражение F(x)+C вместо C, получим первообразную для f на промежутке I.
- 2) какую бы первообразную Φ для \mathbf{f} на промежутке \mathbf{I} ни взять, можно подобрать такое число \mathbf{C} , что для всех \mathbf{x} из промежутка \mathbf{I} будет выполнено равенство
 - $\Phi(x) = F(x) + C.$
 - · Доказательство.
- 1) по условию функции F первообразная для f на промежутке I. Следовательно, F'(x)=f(x) для любого x I, поэтому

$$(F(x) + C)' = F'(x) + C' = f(x) + 0 = f(x),$$

- т.е. F(X) + C первообразная для f .
- 2) пусть $\Phi(x)$ одна из первообразных для функции f на том же промежутке I, т.е. $\Phi'(x)=f(x)$ для всех x I. Тогда
- $(\Phi(x) F(x))' = \Phi'(x) F'(x) = f(x) f(x) = 0$
- Отсюда следует в силу признака постоянства функции, что разность $\Phi(x)$ $\Gamma(x)$ есть функция, принимающая некоторое постоянное значение C на промежутке C.
- Таким образом, для всех x из промежутка I справедливо равенство $\Phi(x)$ F(x) = C, что и требовалось доказать.



1.3 три правила нахождения первообразных

- П**равило 1**. если **F** есть первообразная для **f**, а для **G** первообразная для **g**, то **F+G** есть первообразная для **f+g**.
- Действительно, так как F'=f и G'=g, по правилу вычисления производной суммы имеем:
- (F+G)' = F' + G' = f + g.
- Правило 2. если F есть первообразная для f, a k постоянная, то ф ункция kF первообразная для kf.
- Действительно, постоянный множитель можно выносить за знак производной, поэтому:
- (kF)' = kF' = kf.
- Правило 3. если F(x) есть первообразная для f(x), a k и b постоянные, причем k=0, то F(kx+b) есть первообразная для f(kx+b).
- Действительно, по правилу вычисления производной сложной функции имеем:
- (F(kx + b))' = F'(kx + b)*k=f(kx + b)

интеграл

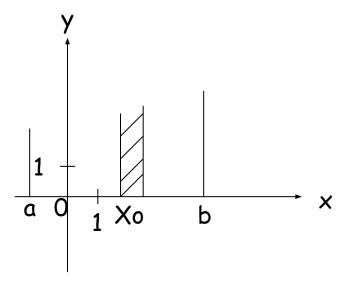
2.1. площадь криволинейной трапеции

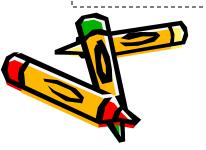
- Пусть на отрезке [a; b] оси оХ задана непрерывная функция f, не меняющая на нем знака. Фигуру, ограниченную графиком этой функции, отрезком [a; b] и прямых x = a и x = b, называют криволинейной трапецией.
- **Теорема**. Если **f** непрерывная и неотрицательная на отрезке [a; b] ф ункция, а **F** ее первообразная на этом отрезке, то площадь **S** соответствующей криволинейной трапеции равна приращению первообразной на отрезке [a; b], т.е.
 - S=F(b)-F(a).
- Доказательство. Рассмотрим функцию S(x), определенную на отрезке [a;b]. Если a < x < b, то S(x) площадь той части криволинейной трапеции, которая расположена левее вертикальной прямой, проходящей через точку Xo (рис. 1). Если x = a, то S(a) = 0. Отметим, что S(b) = S(S площадь криволинейной трапеции).
- Докажем, что

• $S'(x_0) = f(x_0)$.

2.1площадь криволинейной трапеции...

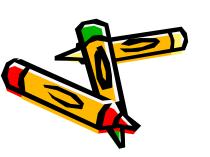
• Рис.1





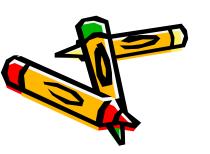
2.1 площади криволинейной трапеции...

- Пусть Хо принадлежит [a,b]. f(x) непрерывна в Хо. Тогда в достаточно малой окрестности в точке Хо функцию f(x) можно считать постоянной и равной f(Xo).
- Тогда прирощение равно площади приближенно равно: f(x) △x
- $\triangle S : \triangle x = f(x)$
- Если △ х → 0, △ S : △ х → S'(Хо)
- S'(Xo) = f(Xo) т.е S первообразная функции f в точке Xo



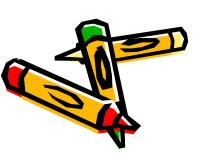
2.1площаль криволинейной трапеции

- Получили, что **S** есть первообразная для **f**. Поэтому в силу основного свойства первообразных для всех **x** [a; b] имеем:
 - $\cdot \quad \mathsf{S}(\mathsf{x}) = \mathsf{F}(\mathsf{x}) + \mathsf{C},$
- Где C некоторая постоянная, а F одна из первообразных для функции f. Для нахождения C подставим x = a:
 - F(a) + C=S(a)=0,
- Откуда C = -F(a). Следовательно,
 - S(x) = F(x) F(a).
- Поскольку площадь криволинейной трапеции равна S(b), подставляя x = b в формулу S(x)+F(x)-F(a), получим:
 - S = S(b) = F(b) F(a).



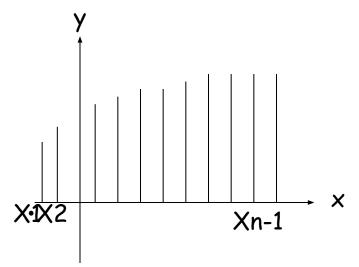
2.2Интеграл. Формула Ньютона - Лейбница

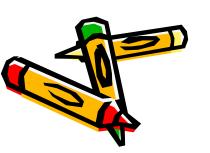
- Понятие об интеграле. Пусть функция f неотрицательна и непрерывна на отрезке [a; b], тогда площадь S соответствующей криволинейной трапеции можно приближенно подсчитать следующим образом.
- Разобьем отрезок [a; b] на n отрезков одинаковой длины точками
- x0 = a < x 1 < x 2 < ... < x n -1 < x n = b, и пусть x = x k x k 1, где k = 1, 2, ..., n-1, n. На каждом из отрезков [x k-1; x k] как на основании построим прямоугольник высотой f(x k-1). сумма площадей всех таких прямоугольников (рис.2) равна:</p>
- Sn = (f(x0) + f(x1) + ... + f(x n-1)).
- \cdot Т.к f(x) непрерывная функция , то при x о,т.е n , то Sn S

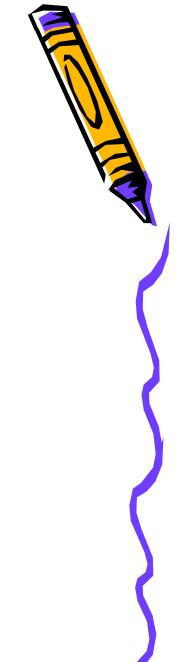


2.2

Рис.2







2.2

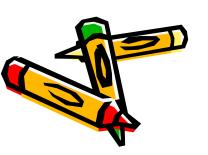
- Для любой непрерывной функции на отрезке [a,b] доказано, что Sn S к некоторому числу. Это число называют интегралом функции.
- f(x)d(x), где f(x) подинтегральная функция, а нижний предел интегрирования, b-верхний, интеграл, х переменная. Интеграл это предел интегрированяи сумм. Сравнивая S= F(b) F(a) и S= f(x)dx, можно записать

2.2

• Эта формула называется формулой Ньютона - Лейбница. Она верна для любой функции f, непрерывной на отрезке [a; b].

1.6 Таблица первообразных

Производная функции $f'(x)$	Φ ункция $f(x)$	Первообравная ϕ ункции $F(x)+C$
0	1	x
0	к (число)	kx
1	x	$\frac{x^2}{2}$
k	kx + b	$k\frac{x^2}{2} + bx$
2x	x°	$\frac{x^3}{3}$
2ax + b	$ax^{g} + bx + c$	$\frac{ax^3}{3} + \frac{bx^2}{2} + cx$
$3x^{g}$	x^z	$\frac{x^4}{4}$



1.6 Таблица первообразных

$\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x\sqrt{x}$
nx^{a-1}	$x^{\alpha}, n \neq 0$	$\frac{x^{n+1}}{n+1}$
- ksin kx	cos kx	$\frac{1}{k}\sin kx$
keos kx	sin kx	$-\frac{1}{k}\cos kx$
$-\frac{k}{x^2}$	$\frac{k}{x}$	-
$-\frac{2k}{x^3}$	$\frac{k}{x^2}$	$-\frac{k}{x}$

