Числовые ряды

Лекции 10,11

Определение числового ряда

Рассмотрим некоторую числовую последовательность $u_1, u_2, u_3, ..., u_n, ...$ Составим из членов этой последовательности бесконечную сумму

$$u_1 + u_2 + u_3 + ... + u_n + ...$$

Определение. Выражение (1)

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$

называется числовым рядом, u_n - общий член ряда.

- Рассмотрим ряд1-1+1-1+...+ (-1)ⁿ+...
- Очевидно, сумма четного числа его членов равна нулю, а нечетного единице. Такой ряд не имеет суммы.

Известно, что геометрическая прогрессия со знаменателем, меньшим единицы, $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ...$ сходится, ёсли $|a_n| < 1$.

Понятие сходящегося ряда

Опр. Конечные суммы $S_1 = u_1$, $S_2 = u_1 + u_2$ $S_3 = u_1 + u_2 + u_3,...,S_n = u_1 + u_2 + ... + u_n...$ называются частичными суммами ряда (1). **Опр.** Если существует конечный $\lim_{n \to \infty} S_n = S$, $n \to \infty$

то числовой ряд называется сходящимся, а число S - суммой ряда. Если $\lim_{n \to \infty} S_n$ равен

бесконечности или вообще не существует, то ряд расходится.

Пример сходящегося ряда

Показать, что ряд
$$\sum_{n=1}^{\infty} \frac{1}{n(n-1)}$$
 сходится и найти его сумму.

Общий член ряда
$$u_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
.

Тогда
$$u_1 = 1 - \frac{1}{2}$$
, $u_2 = \frac{1}{2} - \frac{1}{3}$, $u_3 = \frac{1}{3} - \frac{1}{4}$,...

$$S_n = u_1 + u_2 + u_3 + \dots + u_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots$$

$$+\frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}, \quad \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

Свойства сходящихся рядов

1) Сходящиеся ряды можно почленно складывать, т.е.

$$\sum_{n=1}^{\infty} u_n + \sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} (u_n + v_n)$$

2) Постоянный множитель можно вынести за знак ряда, т. е.

$$\sum_{n=1}^{\infty} c u_n = c \sum_{n=1}^{\infty} u_n.$$

Свойства сходящихся рядов

От сходящегося ряда можно отбросить конечное число членов или наоборот прибавить конечное число слагаемых и при этом сходимость ряда не изменится.

Гармонический ряд

Исследуем ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, называемый гармоническим. n=1

Для решения задачи запишем гармонический ряд в развернутом виде:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots + \frac{1}{16} + \dots + \frac{1}{32} + \dots$$

и наряду с ним рассмотрим ряд с меньшими членами

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{32} + \dots$$

Продолжение

Найдем частичные суммы второго ряда:

$$S_2 = 1 + \frac{1}{2}; \quad S_4 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + 2 \cdot \frac{1}{2};$$

$$S_8 = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + 3 \cdot \frac{1}{2};$$

$$S_{16} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + 4 \cdot \frac{1}{2}$$

$$S_{2^n} = 1 + n \cdot \frac{1}{2} \qquad \text{MTak},$$

гармонический ряд расходится, т. к. его сумма больше суммы вспомогательного ряда.

Признаки сходимости ряда

Необходимое условие сходимости ряда.

Если ряд
$$\sum_{n=1}^{\infty} u_n$$
 сходится, то $\lim_{n\to\infty} u_n = 0$.

Если же
$$\lim_{n\to\infty}u_n\neq 0$$
, то ряд расходится.

Пример расходящегося ряда

Пример 1. Ряд $\sum_{n=1}^{\infty} \frac{n}{5n+1}$ расходится, так

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n}{5n+1} = \frac{1}{5} \neq 0$$

<u>Знакоположительные</u> <u>ряды</u>

Признак сравнения.

Пусть даны ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ Если ряд с большими членами сходится, то сходится и ряд с меньшими членами. Если же ряд с меньшими членами расходится, то расходится и ряд с большими членами.

Признак сравнения в предельной форме

Если существует конечный и отличный от нуля $\lim_{n\to\infty} \frac{u_n}{v_n} = A$, то

ряды
$$\sum_{n=1}^{\infty}u_n$$
 и $\sum_{n=1}^{\infty}v_n$ сходятся или

расходятся одновременно.

В качестве рядов для сравнения берут гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, который

расходится, и ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ или $\sum_{n=1}^{\infty} \frac{1}{n^p}$, о которых известно, что первый сходится, а второй при р>1сходится, а при р≤1 расходится.

Исследовать на сходимость ряды

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 и б) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Найдем предел отношения членов данного ряда и ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$,с которым сравниваем данный ряд.

$$\lim_{n\to\infty} \frac{1 \cdot n^2}{(n^2+1)\cdot 1} = 1$$
. Ряд сходится.

Ряд
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 сравниваем с гармоническим рядом $\sum_{n=1}^{\infty} \frac{1}{n}$.

Так как $\frac{\frac{1}{\sqrt{n}} > \frac{1}{n}}{\sqrt{n}}$, то данный ряд расходится вместе с гармоническим рядом.

Признак Даламбера

Если существует конечный $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=$ \square то 1)при $\square<1$ ряд $\sum_{n=1}^{\infty}u_n$, где $u_n>0$, сходится, 2)при $\square>1$ ряд расходится, 3)при $\square=1$ признак ответа не дает.

Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{2n}{e^n}$$

Так как
$$u_n = \frac{2n}{e^n}$$
 , то $u_{n+1} = \frac{2(n+1)}{e^{n+1}}$ и $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2(n+1)e^n}{e^{n+1}2n} = \lim_{n \to \infty} \frac{n+1}{e^n} = \frac{1}{e}\lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{e}$

Так как $\frac{1}{e}$ <1, то данный ряд сходится.

Признак Коши

```
Если существует конечный \lim_{n\to\infty} \sqrt[n]{u_n} \mp c, 1) при ряд \lim_{n\to\infty} \sqrt[n]{u_n} + c, сходитея, \lim_{n\to\infty} \sqrt[n]{u_n} + c, \lim_{n\to\infty} \sqrt[n]{u_n} + c
```


Ряд
$$\sum_{n=1}^{\infty} \left(\frac{3n+1}{n+2}\right)^n$$
 исследуем с помощью признака Коши.

Вычислим
$$\sqrt[n]{u_n} = \sqrt[n]{\left(\frac{3n+1}{n+2}\right)^n} = \frac{3n+1}{n+2}$$
.

Тогда
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{3n+1}{n+2} = 3 > 1$$
 и ряд согласно признаку Коши расходится.

Интегральный признак

Пусть члены ряда $\sum_{n=1}^{\infty} u_n$ ПОЛОЖИТЕЛЬНЫ И $u_n > u_{n+1}^{n=1}$ ПРИ $\forall n \in N$. Пусть функция f(x) при x = n имеет значения $f(n) = u_n$, положительна и монотонно убывает при x > 1. Тогда числовой ряд сходится или расходится вместе с несобственным интегралом

$$\int_{1}^{+\infty} f(x) dx$$

Обобщенный гармонический

Исследуем ряд $\sum_{1^{n=1}}^{\infty} \frac{1}{n^p}$. Функция $f(x) = \frac{1}{x^p}$ монотонно убывает.

Несобственный интеграл

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \int_{1}^{\infty} x^{-p} dx = \frac{x^{-p+1}}{-p+1} \Big|_{1}^{\infty} = \frac{1}{1-p} \lim_{x \to \infty} (\frac{1}{x^{p-1}} - 1) =$$

$$= \begin{cases} \frac{1}{p-1}, & p > 1 \\ \infty, & p < 1 \end{cases}$$
 . Ряд расходится при $p < 1$ и сходится при $p > 1$.

Исследовать на сходимость ряд

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$
 . Члены ряда $u_n = \frac{1}{n\sqrt{\ln n}}$

положительны и монотонно убывают.

Функция
$$f(x) = \frac{1}{x\sqrt{\ln x}}$$
, очевидно, также

положительна при *x*≥2 и монотонно убывает.

Продолжение

$$\int_{2}^{+\infty} \frac{dx}{x\sqrt{\ln x}} = \lim_{b \to +\infty} \int_{2}^{b} \frac{dx}{x\sqrt{\ln x}} = \lim_{b \to +\infty} \int_{0}^{b} \frac{d(\ln x)}{\sqrt{\ln x}} = \lim_{b \to +\infty} 2\sqrt{\ln x} \Big|_{2}^{b} = \lim_{b \to +\infty} 2\sqrt{\ln b} - 2\sqrt{\ln 2} = +\infty$$

Несобственный интеграл, а вместе с ним и числовой ряд расходятся.

Знакопеременные ряды

Признак Лейбница

Пусть члены знакочередующегося ряда

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1} u_n + \dots$$

удовлетворяют условиям:

1)
$$u_1 > u_2 > u_3 > ... > u_n > ...$$

и 2)
$$\lim_{n \to +\infty} u_n = 0$$

Тогда знакочередующийся ряд сходится, причём его сумма S не превосходит его первого члена, т.е. $S < u_1$

Исследовать на сходимость ряды:

1)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+1}$$
 2) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n+2}$.
1) члены знакочередующегося ряда

$$u_1 = \frac{1}{2}, u_2 = \frac{1}{3}, u_3 = \frac{1}{4}, ..., u_{n+1} = \frac{1}{n+1}, ...$$
 монотонно убывают и

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n+1} = 0$$

Согласно признаку Лейбница ряд СХОДИТСЯ.

2) общий член ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n+2}$ не стремится к нулю, так как

$$\lim_{n\to\infty}\frac{n}{n+2}=1$$

Следовательно, ряд расходится согласно необходимому признаку.

Достаточный признак сходимости знакопеременного ряда

Если сходится ряд
$$\sum\limits_{n=1}^{\infty} |u_n|$$
 , то знакопеременный ряд $\sum\limits_{n=1}^{\infty} u_n$ также сходится.

Абсолютно сходящийся ряд

Определение.

Если сходится ряд $\sum_{n=1}^{\infty} |u_n|$, то знакопеременный ряд называется абсолютно сходящимся.

Условно сходящийся ряд

Определение.

Если сходится ряд $\sum_{n=1}^{\infty} u_n$, а ряд $\sum_{n=1}^{\infty} |u_n|$ расходится, то знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ называется условно сходящимся.

Ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$ абсолютно сходится, т.к. ряд из модулей его членов $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится. Ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+1}$ сходится условно, т.к. он согласно признаку Лейбница сходится, но ряд из модулей его членов, т.е. ряд $\sum_{n=1}^{\infty} \frac{1}{n+1}$ расходится вместе с гармоническим рядом.

Остаток ряда и его оценка

Определение. Если числовой ряд сходится, то разность $R_n = S - S_n$ называется *п*-м остатком ряда. Таким образом, $R_n = u_{n+1} + u_{n+2} + \dots$ представляет собой сходящийся ряд. При этом $\lim_{n\to\infty}R_n=\lim_{n\to\infty}(S-S_n)=S-S=0$. **Теорема**. Если знакочередующийся ряд сходится, то $|R_n| < u_{n+1}$.

