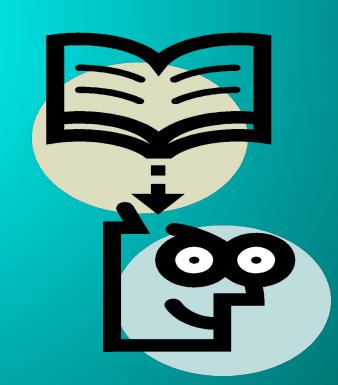
Арифметический квадратный корень

Автор Календарева Н.Е. © 2011 г.



План

- 1. Определение
- 2. Свойства арифметического квадратного корня
- 3. Повторение арифметического корня *n*-й степени
- 4. Иррациональные уравнения

Определение

Арифметическим квадратным корнем из неотрицательного числа а (а ≥ 0) называется неотрицательное число, квадрат которого равен а:

$$\sqrt{a} = b$$

Другими словами, если

1)
$$b \ge 0$$
 и 2) $b^2 = a$, то $b = \sqrt{a}$.

Из определения арифметического квадратного корня следует,

что
$$(\sqrt{a})^2 = a$$
.

Свойства арифметического квадратного корня

1. Если a ≥ 0 и b ≥ 0 , то
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 .

2. Если a ≥ 0 и b > 0 , то
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 .

3. При любом значении
$$x = |x|$$
 .

4.
$$\sqrt{x} = 0 \Leftrightarrow x = 0$$
.

4. $\sqrt{x} = 0 \Leftrightarrow x = 0$.
5. $\sqrt{x} \ge 0$ всегда (по определению арифметического корня).

Основные свойства арифм. Корня *п*-й степени

Пусть $a \ge 0$, b > 0; n, $k \ge 2$ – натуральные числа. Имеют место следующие формулы:

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{b}$$

$$(2)$$

$$(\sqrt[n]{a})^k = \sqrt[n]{a^k}$$

$$\sqrt[n]{a} = \sqrt[n]{a^k}$$

$$\sqrt[n]{a} = \sqrt[n]{a^k}$$
(4)

Степень с рациональным показателем

Для положительного числа *а* определена степень с рациональным показателем (формула 5).

$$a > 0; \qquad a^{\frac{m}{n}} = \sqrt[n]{a}^m = \sqrt[n]{a}^m$$

Решите уравнения и неравенства

1.
$$\sqrt{x^2 + 1} = 0$$

Ответ: Ø

2.
$$\sqrt{x-1} < 0$$

Ответ: Ø

3.
$$\sqrt{x^2} > 0$$

Ответ:
$$(-\infty;0)U(0;+\infty)$$

$$4. \qquad \sqrt{x-1} \ge 0$$

5.
$$\sqrt{x} = 4$$

Ответ: 16

Иррациональные уравнения

Уравнение, содержащее одно или несколько выражений под знаком арифметического квадратного корня, называется *иррациональным*.

Выражения, стоящие под знаком корня, должны быть неотрицательны, поэтому начинать решение следует с области допустимых значений переменной, т.е. с ОДЗ.

Решение иррациональных уравнений

$$\sqrt{f(x)} = g(x)$$
 ОДЗ: $f(x) \ge 0$

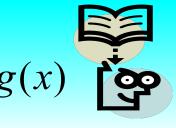
Решение. В левой части уравнения записан арифметический корень, который по своему определению неотрицателен. Тогда и правая часть уравнения должна быть неотрицательна.

Поэтому запишем систему, и уравнение возведем в квадрат.

На ОДЗ уравнение будет равносильно системе, состоящей из неравенства и уравнения.

$$\begin{cases} g(x) \ge 0, \\ f(x) = g^2(x). \end{cases}$$

Решение уравнения $\sqrt{f(x)} = g(x)$



Учитывая ОДЗ, фактически надо решать систему из двух неравенств и одного уравнения:

$$f(x) \ge 0$$

$$g(x) \ge 0$$

$$f^{2}(x) = g(x).$$

Решаем уравнение, находим корни (числа).

Надо еще решить систему из двух неравенств. Решаем ее методом интервалов.

Рисуем две оси друг под другом, ищем пересечение и проверяем, попали ли корни в найденные промежутки.

А как решали в школе? Возводили в квадрат, получали «целые» числа и просто делали проверку. Корни уравнения чаще всего будут не целыми числами. Данный метод отсекает посторонние корни, поэтому проверка не нужна. Но...

Проверку желательно делать всегда, если это не очень затруднительно.

Решите уравнение $x - \sqrt{x+1} = 1$.

Решение. : ОД3:
$$x + 1 \ge 0$$
, т.е. $x \in [-1; +\infty)$.

Заменим данное уравнение равносильной на ОДЗ системой:

$$\begin{cases} x-1 \ge 0, \\ x+1 = (x-1)^2. \end{cases}$$

Корни уравнения $x_1 = 0$; $x_2 = 3$.

Подставим в неравенство.

При x = 0 имеем: $0 - 1 \ge 0$, т.е. $- 1 \ge 0$, что неверно.

При x = 3 имеем: $3 - 1 \ge 0$, т.е. $2 \ge 0$, что верно.

Пересекаем с ОД3: 3 + 1 ≥ 0. Удовлетворяет ОД3.

Ответ: 3.

Домашнее задание

- 1. Выучить определение арифметического корня из числа
- 2. Понимать, что такое арифметический корень из функции f(x)
- 3. Выучить формулу $\sqrt{(f(x))^2} = |f(x)|$
- 4. Запомнить метод решения иррациональных уравнений