Статистика и теори вероятностей

Подготовка к решению задач

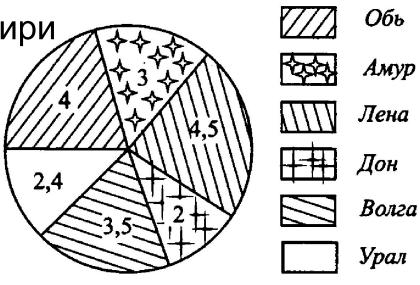
на ГИА и ЕГЭ

Учитель математики МАОУ гимназия восточных языков № 4 Голубева Татьяна Аликовна

г. Хабаровск, 2014

Математическая статистика - это раздел математики, который имеет своим предметом изучение методов сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия РРИЧНОМ под статистическими данными понимается совокупность чисел, которые представляют количественные характеристики интересующих нас признаков изучаемых объектов. Статистические данные получаются в результате специально поставленных опытов, наблюдений.

Данные могут быть представлены графически;


- в виде ряда данных;
- в виде таблиц.

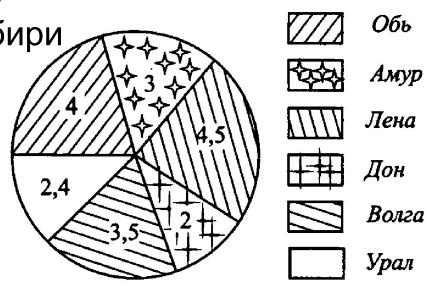
• Круговые диаграммы

На диаграмме представлены длины крупнейших рек Европейской и Азиатской частей России (в тыс.км). Какое из следующих утверждений верно?

- 1. Длина Дона больше длины Оби
- 2. Длина Волги составляет 4 тыс.км
- 3. Река Урал входит в семерку крупнейших по длине рек Сибири

4. Длина Волги больше длины Амура

• Круговые диаграммы


На диаграмме представлены длины крупнейших рек Европейской и Азиатской частей России (в тыс.км). Какое из следующих утверждений верно?

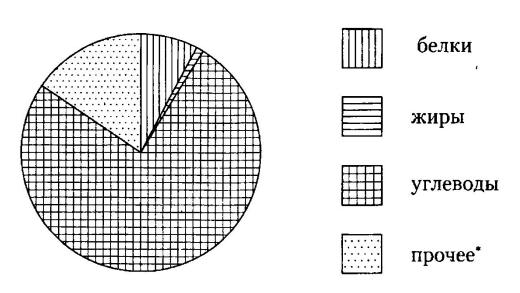
- 1. Длина Дона больше длины Оби
- 2. Длина Волги составляет 4 тыс.км
- 3. Река Урал входит в семерку крупнейших по длине рек Сибири

4. Длина Волги больше длины Амура

Ответ:

4

• Круговые диаграммы

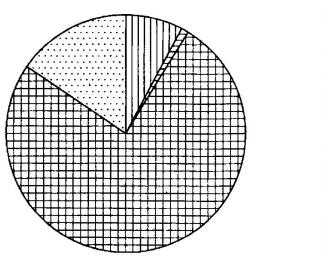

На диаграмме показано содержание питательных веществ в рисе.

Определите по диаграмме, в каких пределах находится содержание углеводородов.

$$1) 0 - 20 \%$$

1)
$$0 - 20 \%$$
 2) $20 - 50 \%$ 3) $50 - 70 \%$ 4) $70 - 100 \%$

Ответ:



• Круговые диаграммы

На диаграмме показано содержание питательных веществ в рисе.

Определите по диаграмме, содержание каких веществ преобладает.

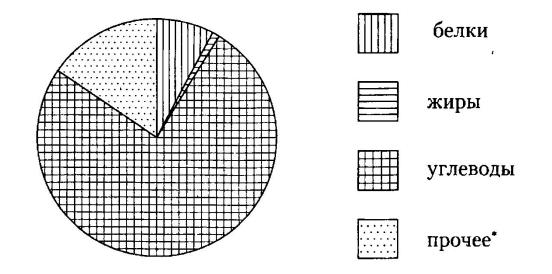
1) белки 2) жиры 3) углеводы 4) прочее

белки

жиры

углеводы

прочее*


Ответ:

• Круговые диаграммы

На диаграмме показано содержание питательных веществ в рисе.

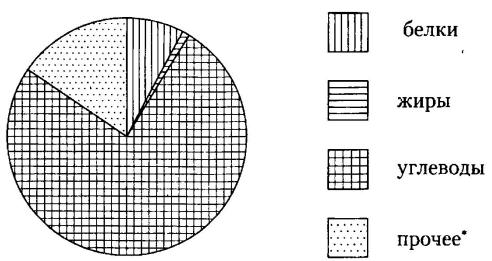
Определите по диаграмме, сколько примерно белков содержится в 500 г риса.

1)около 7 г 2)около 35 г 3)около 70 г 4)около 350 г

Ответ:

2

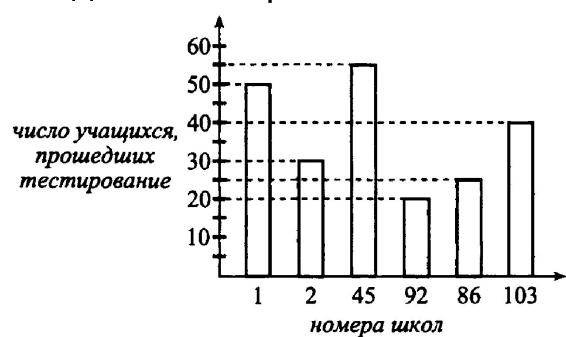
• Круговые диаграммы


На диаграмме показано содержание питательных веществ в рисе.

Определите по диаграмме, какая примерно масса риса содержит 300 г углеводов.

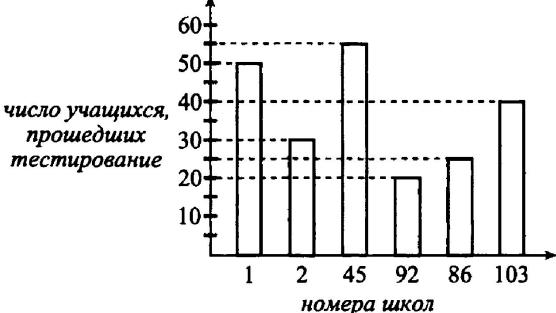
1) около 220 г 2) около 400 г 3) около 1,5 кг 4)

около 3 кг


Ответ: 2

• Столбчатые диаграммы

На диаграмме показано количество учащихся, прошедших тестирование по математике в некотором городе.


Определите номер школы, занявшей второе место по числу прошедших тестирование.

• Столбчатые диаграммы

На диаграмме показано количество учащихся, прошедших тестирование по математике в некотором городе.

Определите, на сколько учеников больше прошли тестирование в школе 103, чем в школе 86..

Ряд данных и таблица распределения данных

Например. Результаты написания контрольной работы по математике для класса из 20 человек можно представить в виде следующего ряда данных:3,4,4,5,3,4,3,3,5,5,4,5,4,5,3,3,3,4,3. Эту же информацию можно представить в виде

TG	<u> </u>							
ıc	оценка	3	4	5				
	Кратность (частота)	9	6	5				

Такую таблицу называют таблицей частот.

Числовые характеристики данных

- Среднее арифметическое ряда чисел частное от деления суммы этих чисел на число слагаемых
- *Размах* ряда чисел разность между наибольшим и наименьшим из этих чисел
- *Мода* ряда чисел число наиболее часто встречающееся в данном ряду
- <u>Медианой</u> упорядоченного ряда чисел с <u>нечётным</u> числом членов называется среднее в ряду число; с <u>чётным</u> числом членов среднее арифметическое чисел, записанных посередине

Вернемся к нашей

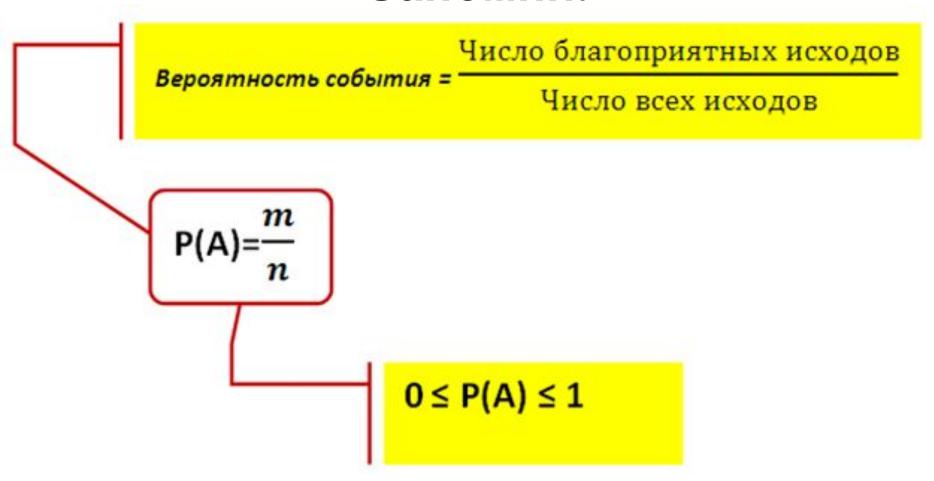
задаче. оценка	3	4	5
Кратность (частота)	9	6	5

- Размах ряда 5-3 = 2
- 2. Мода ряда число 3 (т.к. встречается чаще всех)
- 3. Среднее арифметическое (3·9+4·6+5·5):20=3,8
- 4. Медиана ряда равна 4.

Задача. По статистике автозавода из 1000 машин в среднем 20 бракованных. Сколько бракованных машин следует ожидать, если завод собирается выпустить 300 500 машин?

Решение: Если из 1000 машин 20 бракованных, то частота появления бракованной машины равна $\frac{20}{1000}$ = 0,02. Тогда из 300 500 машин будет 300 500 · 0,02 = 6010 бракованных машин.

Теория вероятностей изучает


объективные закономерности массовых случайных событий. Она является теоретической базой для математической статистики, занимающейся разработкой методов сбора, описания и обработки результатов наблюдений.

Теория вероятностей есть раздел

математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении.

- 1. Случайное событие (СС)- это событие, которое либо произойдёт, либо нет.
- 2. Каждое случайное событие (СС) иметь свою вероятность произойти (сбыться, реализоваться).
- 3. **Испытание** любое действие, которое может привести к одному или нескольким результатам.
- 4. **Исход** конечный результат испытания. Значит испытание может иметь один или несколько исходов.

Запомни:

- m число (количество) благоприятных исходов,
- n число (количество) всех исходов.

Э. Оля, Денис, Коля, Витя и Света бросили жребий – кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.

$$P(A) = \frac{3}{5} = 0.6$$

2. На экзамене 40 билетов по геометрии. В 12 из них встречается вопрос по теме «Углы». Найдите вероятность того, что в случайно выбранном на экзамене билете по геометрии школьнику не достанется вопроса по теме «Углы».

$$P(A) = \frac{28}{40} = 0.7$$

3. В сборнике билетов по истории всего 50 билетов, в 9 из них встречается вопрос по древней истории, а в 11 — по средневековью, при этом ровно в 3 билетах встречаются вопросы и по древней истории, и по средневековью. Найдите вероятность того, что в случайно выбранном билете по истории школьнику не достанется вопроса ни по древней истории, ни по средневековью.

Решение: 1) 9+11-3=17 билетов, в которых встречается вопрос по древней истории или по средневековью.

2) 50 – 17= 33 билета, в которых нет таких вопросов.

3)
$$P(A) = \frac{33}{50} = 0.66$$

Ответ: 0,66

4. Одновременно бросают две монеты. С какой вероятностью на них выпадут два орла?

Решение: О – орел, Р – решка.

Возможные исходы: ОО, ОР, РО, РР.

Благоприятный исход: ОО.

$$P(A) = \frac{1}{4} = 0.25$$

5. Конференция проводится 3 дня. Всего запланировано 50 докладов: в первый день — 30 докладов, а остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьевкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: 1) (50-30): 2=10 докладов в третий день

2)
$$P(A) = \frac{10}{50} = 0.2$$

Ответ: 0,2

Два события А и В называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию А, так и событию В.

Пример:

при бросании кубика события **«выпало число 3»** и **«выпало четное число»** несовместны, а события **«выпало число больше 3»** и **«выпало четное число»** совместны.

Пусть событие С означает, что произошло хотя бы одно из событий А и В. Тогда С называют объединением событий А и В, пишут С=А В.

Если события A и B несовместны, то вероятность их объединения равна сумме вероятностей событий A и B:

$$P(A \square B) = P(A) + P(B)$$

Примеры

1. Имеются 20 карточек, на которых записаны числа от 1 до 20. Из них наугад выбирают одну карточку. Какова вероятность того, что на выбранной карточке будет число 20 или любое нечетное число?

Решение: A – «выбрана карточка с числом 20»,

В – «выбрана карточка с нечетным числом».

События A и B несовместны. P (A) = $\frac{1}{20}$, P (B) = $\frac{1}{2}$.

Поэтому P (AUB) =
$$\frac{1}{20} + \frac{1}{2} = 0,55$$

Ответ: 0,55

Примеры

2. На подносе лежат одинаковые на вид пирожки: 4 с мясом, 2 с картошкой и 9 с капустой. Какова вероятность того, что случайно выбранный пирожок будет с мясом или с картошкой?

Решение: А – «выбран пирожок с картошкой»,

В – «выбран пирожок с мясом».

Всего 9+2+4=15 пирожков.

События A и B несовместны. P (A) = $\frac{2}{15}$, P (B) = $\frac{4}{15}$.

Поэтому P (AUB) =
$$\frac{2}{15} + \frac{4}{15} = 0,4$$

Ответ: 0,4

Два события А и В называют независимыми, если вероятность каждого из них не зависит от появления или непоявления другого события.

Пример:

Выполним последовательно два подбрасывания монеты. Тогда события «при первом подбрасывании выпала решка» и «при втором подбрасывании выпал орел» являются независимыми: вероятность каждого из них рана 0,5 независимо от того, что произошло при другом подбрасывании.

Другой пример: Пусть в урне находятся два черных и два белых шара. Сперва из урны наугад извлекают один шар. Затем из этой же урны наугад извлекают еще один шар.

Пусть событие A — «первый извлеченный шар белый», событие В — «второй извлеченный шар черный». Тогда события A и B являются зависимыми.

Действительно, если событие А произошло, то в урне из трех оставшихся шаров два черных и $P(B) = \frac{2}{3}$. Если же событие А не произошло (т.е. в первый раз вытащили черный шар), то в урне из трех оставшихся шаров один черный и $P(B) = \frac{1}{3}$.

Пусть событие С означает, что произошло как событие А, так и событие В. Тогда С называют пересечением событий А и В, пишут С = А∩В.

Если события A и B независимы, то вероятность их пересечения равна произведению вероятностей событий A и B:

 $P(A \cap B) = P(A) \cdot P(B)$

Пример:

Задача 1. В первой урне находятся 10 белых и 4 черных шаров, а во второй урне 5 белых и 9 черных шаров. Из каждой урны вынули по шару. Какова вероятность того, что оба шара окажутся черными?

Решение: A — из первой урны вынули черный шар, В — из второй урны вынули черный шар.

Эти события независимы и P(C)= $\frac{4}{14} \cdot \frac{9}{14} = \frac{9}{49} \approx 0,184$.

Пример:

Задача 2. Монету подбрасывают три раза подряд. Какова вероятность того, что все три раза выпадет «орел»?

Решение: **1 вариант.**

Пусть A_1 , A_2 , A_3 - выпадение орла в каждом из трех подбрасываний. Эти события независимы и

$$P(A_1)=P(A_2)=P(A_3)=\frac{1}{2}$$
. Поэтому $P(C)=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{8}$.

2 вариант.

1. Подсчитаем с помощью дерева возможных вариантов

количество всевозможных исходов. Их – 8.

- 2. Благоприятный исход (выпадение орла три раза)
- только 1. Вероятность P(A) = 1/8.

Варианты всевозможных исходов можно подсчитать тремя способами.

Способ решения	Плюсы	Минусы		
Дерево вариантов	Наглядность, возможность <u>увидеть</u> все варианты	Очень громоздкий и длительный, если много различных вариантов		
Табличный	Наглядность, компактность, возможность <u>увидеть</u> все варианты	Невозможность решать задачи, в которых более двух составляющих одного события		
Правило умножения	Компактность, быстрота решения	«Не видно» самих вариантов, можно только просчитать их количество.		

Задача 3. Одновременно бросают два игральных кубика. Найдите вероятность того, то на одном кубике выпадет 5 очков, а на другом — четное число очков. В ответе запишите результат, округленный до сотых.

Решение:

На первой кости может быть: 1,2,3,4,5 и 6 очков, т.е. 6 вариантов.

На второй – 6 вариантов.

Всего: 6 · 6=36 (комбинаций). (это правило умножения)

С помощью таблицы можно подсчитать не только количество всевозможных вариантов, но и количество благоприятных исходов (их 6). $P(A) = \frac{6}{36} = 0,1666... = 0,17$

	1	2	3	4	5	6
1	1;1	1;2	1;3	1;4	1;5	1;6
2	2;1	2;2	2;3	2;4	2;5	2;6
3	3;1	3;2	3;3	3;4	3;5	3;6
4	4;1	4;2	4;3	4;4	4;5	4;6
5	5;1	5;2	5;3	5;4	5;5	5;6
6	6;1	6;2	6;3	6;4	6;5	6;6

Примеры

1. Перед началом матча по водному поло судья устанавливает мяч в центр бассейна, и от каждой команды к мячу плывет игрок, чтобы первым завладеть мячом. Вероятности выиграть мяч у каждой команды равны. Команда «Русалка» по очереди играет с командами «Наяда», «Ундина» и «Ариэль». Найдите вероятность того, что во втором матче команда «Русалочка» выиграет мяч в начале игры, а в двух других проиграет.

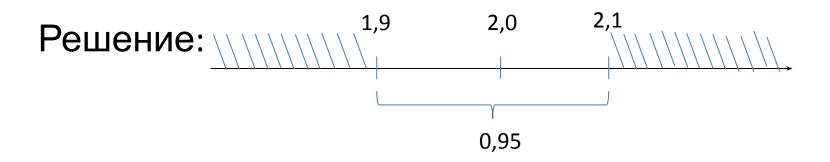
Решение: 1) $\frac{1}{2}$ - вероятность выиграть мяч и $\frac{1}{2}$ -вероятность проиграть мяч.

2) События независимы, поэтому

$$P(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} = 0,125$$

№ В чемпионате по настольному теннису участников разбивают на пары случайным образом. Всего участвует 26 спортсменов, среди которых - 13 из России, в т.ч. Виктор Егоров. Найдите вероятность того, что в первом туре Виктор Егоров будет играть с какимнибудь спортсменом из России.

Решение: Мы зафиксируем одного человека – В.Егорова. Тогда остается 25 спортсменов всего, с одним из которых он будет играть. 12 человек из России. $P(A) = \frac{12}{25} = 0,48$


3. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при каждом выстреле составляет 0,9. Найдите вероятность того, что первые четыре раза биатлонист попадет в мишени, а последний раз – промахнется. Результат округлите до сотых.

Решение: Попал в мишень – вероятность равна 0,9, не попал в мишень – равна 0,1.

События независимые, поэтому

$$P(A) = 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.1 = 0.06561 \approx 0.07$$

4. Автоматическая линия разливает питьевую воду в бутылки по 2 литра. В 95 % случаев объем воды в бутылке отличается от нормы не более, чем на 0,1 литра. Какова вероятность того, что в случайно выбранной бутылке объем воды будет меньше 1,9 л или больше 2,1 л?

P(A) = 1 - 0.95 = 0.05

5. Среди 100 электроламп 5 испорченных. Какова вероятность того, что выбранные наудачу 3 лампы окажутся исправными? Ответ округлите до сотых.

Решение: 1) Всего исходов – это число сочетаний из

$$C_{n}^{k} = \frac{n!}{k!(n-k)!}$$

$$C_{100}^{3} = \frac{100!}{3! \cdot 97!} = \frac{98 \cdot 99 \cdot 100}{6}$$

2) Число благоприятных исходов – число сочетаний из 95 по 3.

$$C_{95}^3 = \frac{95!}{3! \cdot 92!} = \frac{93 \cdot 94 \cdot 95}{6}$$

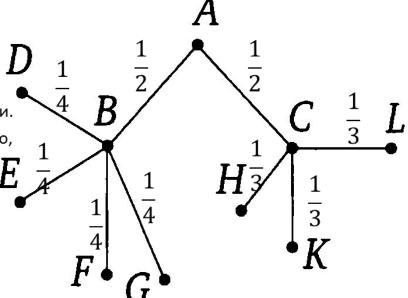
3)
$$P(A) = \frac{C_{95}^3}{C_{100}^3} = \frac{93.94.95}{98.99.100} \approx 0.86$$

6. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого сигнализатора и 0,9 для второго. Найти вероятность того, что при аварии сработает только один сигнализатор.

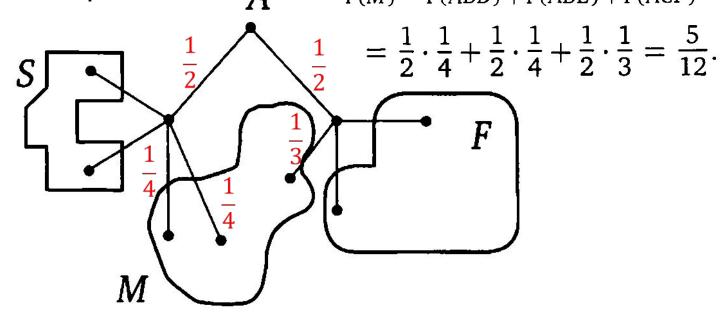
Решение: 1) Введем независимые события: A1 — при аварии сработает первый сигнализатор, A2 - при аварии сработает второй сигнализатор. P(A1)=0,95, P(A2) = 0,9.

2) Введем событие X — при аварии сработает только один сигнализатор. Это событие произойдет, если при аварии сработает первый сигнализатор и не сработает второй, или наоборот. Т.е P(X) = P(A1)· P(Ā2) + P(Ā1)· P(A2).

 $P(X) = 0.95 \cdot 0.1 + 0.05 \cdot 0.9 = 0.14$


Ответ: 0,14

7. Павел Иванович совершает прогулку из точки А по дорожкам парка. На каждой развилке он наудачу выбирает следующую дорожку, не возвращаясь обратно. Схема дорожек показана на рисунке. Найдите вероятность того, что Павел Иванович попадет в точку G.


Решение: Это граф.

Выбор пути на каждой развилке происходит наудачу, поэтому вероятность поровну делится между всеми возможностями. Из точки А — два варианта пути. Следовательно, вероятности равны $\frac{1}{2}$. Из точки С — три пути, значит вероятности равны $\frac{1}{3}$. И т.д.

$$P(G) = P(ABG) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}.$$

8. Павел Иванович совершает прогулку из точки А по дорожкам парка. На каждой развилке он наудачу выбирает следующую дорожку, не возвращаясь обратно. Схема дорожек показана на рисунке. Часть маршрутов приводит к поселку S, другие - в поле F или в болото М. Найдите вероятность того, что Павел Иванович забредет в болото. P(M) = P(ABD) + P(ABE) + P(ACF) = P(ABD) + P(ABE) + P(ABE)

Спасибо за **Рудачанна** экзамене.

Информационные источники

- Балк М.Б., Балк Г.Д. Математика после уроков М.: Просвещение, Пособие для учителей. 1971.- 461 с.
- Математика. Пособие для чайников. Модуль 3: Реальная математика. Базовый уровень. ГИА – 2014. Учебно-методический комплекс «Математика. Подготовка к ГИА». Легион, Ростов-на-Дону, 2013.
- А.В.Семенов, А.С.Трепалин, И.В.Ященко, П.И. Захаров. Государственная итоговая аттестация выпускников 9 классов в новой форме. Математика 2013, Москва, «Интеллект-Центр», 2013.
- Ю.Н.Миндюк, Н.Г.Миндюк. Изучаем элементы статистики и теории вероятностей. Статья в журнале «Математика в школе» №5, 2004.
- http://images.vandev.ru/