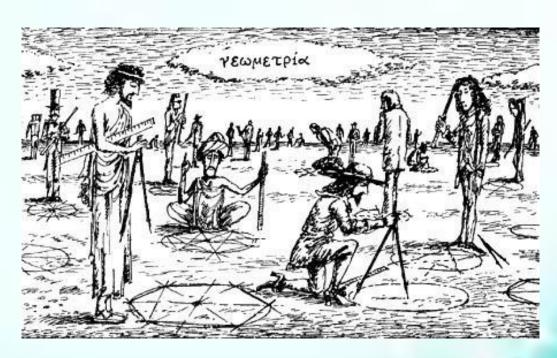
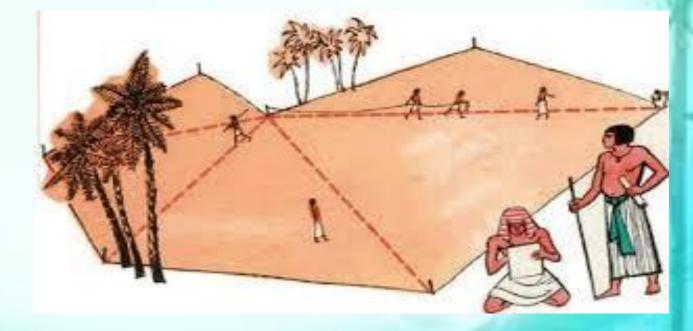
История **тригонометрии**



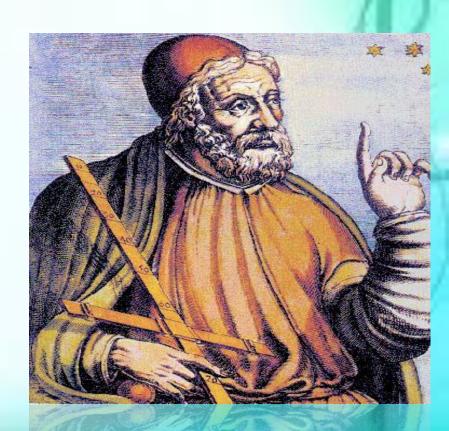
Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).

Возникновение тригонометрии связано с землемерием, астрономией и строительным

делом.

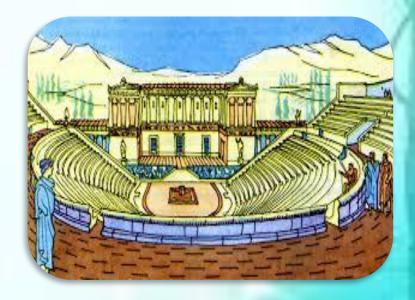


Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.).

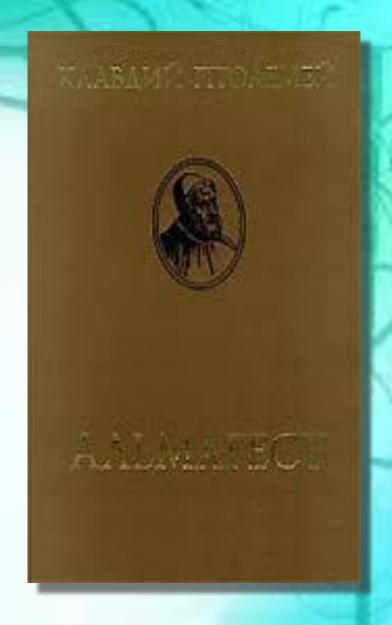


Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

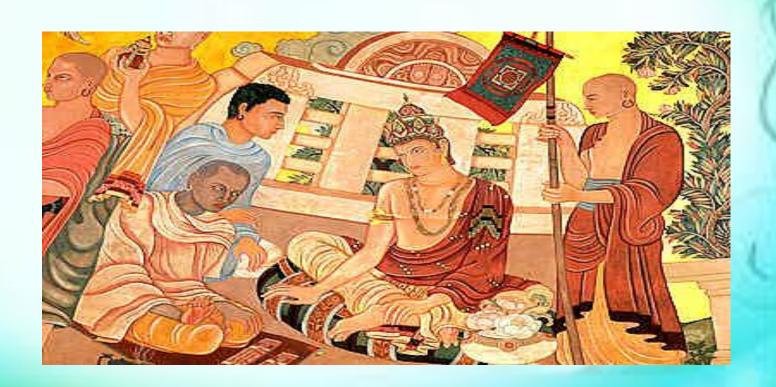
Тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции.



Древнегреческие астрономы успешно решали отдельные вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Греческое слово "хорда", означает "тетива лука". Первые таблицы хорд дошли до нас в книге Птолемея "Альмагест" (II B. H.Э.)



В IV веке центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров.

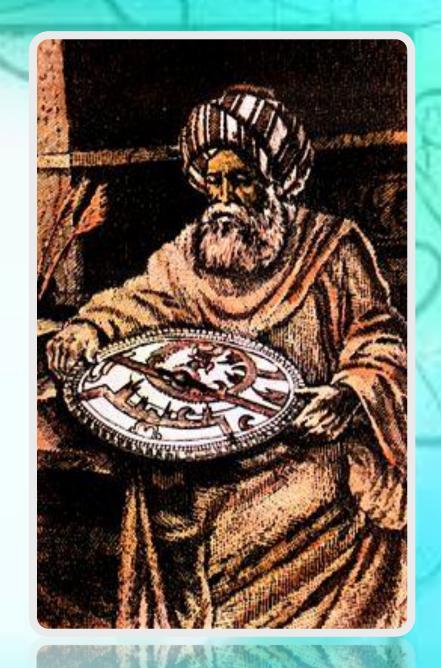


Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен.

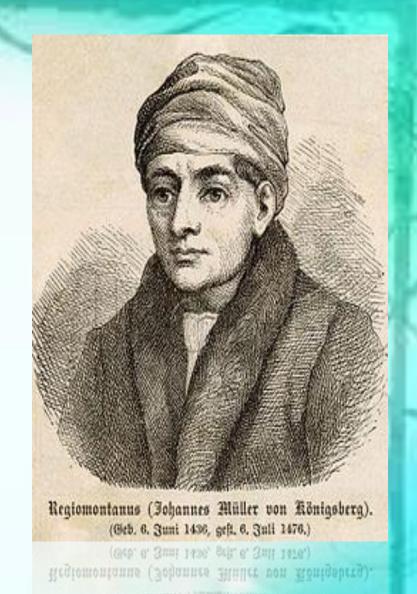
Замену античных хорд на синусы (sinus –изгиб, кривизна) в прямоугольном треугольнике провели индийские математики.

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. "дополнительный синус" (или иначе "синус дополнительной дуги").

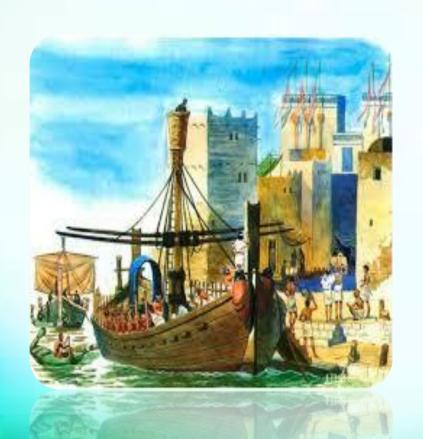
Название «тангенс», происходящее от латинского tanger (касаться), переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в Х веке Аль -Батани, который составил таблицы синусов и тангенсов.

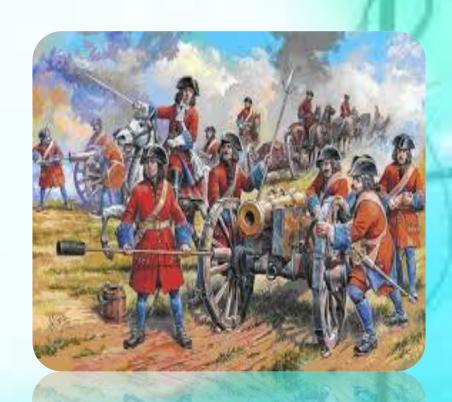


Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.). Именно он доказал теорему тангенсов



Развитие тригонометрии в Новое время(XVI – XVII век) стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях.





Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа Виет.

В России первые сведения о тригонометрии были опубликованы в сборнике «Таблицы логарифмов, синусов и тангенсов к изучению мудролюбивых тщателей», опубликованном при участии Л. Ф. Магницкого в 1703 году.

В 1714 году появилось содержательное руководство «Геометрия практика», первый русский учебник по тригонометрии.

Современный вид тригонометрии придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному.

Определение тригонометрических функций.

Таблица тригонометрических функций

	0°	30°	45°	60°	90°	180°	270°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sinα	0	1/2	<u>√2</u> 2	<u>√3</u> 2	-1	0	-1	0
cosa	1	<u>√3</u> 2	<u>√2</u> 2	1/2	0	-1	0	1
tgα	0	<u>√3</u> 3	1	√ 3		0	_	0
ctga	_	√3	1	<u>√3</u> 3	0		0	_