
Understanding JavaScript
and Coding Essentials

• Vyacheslav Koldovskyy
Last update: 27/08/2015

Agenda

• Basic Information

• How to include JS Code into HTML

• Comments

• Variables

• Data Types

• Type Casting

• Functions in JS

• Input and Output

• JS Code Processing

• Declaration and Expression

Basic information

• JavaScript - dynamic computer programming
language.

• It is most commonly used as part of web browsers,
whose implementations allow client-side to interact
with the user, control the browser and asynchronously
communicate with server-side.

• JavaScript syntax was influenced by C.

• JS supported object-oriented, imperative and functional
programming styles.

1. Inline JavaScript:
<button onclick="alert('Hello!');"></button>

2. Internal tag <script>:
<script>
 alert('Hello!');
</script>

3. External file:
<head>

 <script src="script.js"></script>

</head>

How to add JavaScript to HTML?

Comments

Comments - part of the program text which will be
ignored by language interpreter

▪ The /* characters, followed by any sequence of
characters (including new lines), followed by
the */ characters.

▪ The // characters, followed by any sequence of
characters, but only in current line. Therefore, it is
commonly called a "single-line comment."

[1]

[2]

[3]

Variables

Variable – symbolic name associated with a value
and whose associated value may be changed.

Declaration – process of variable's specifying. Usually
declaration consist of defining: type, name and
default value of variable.

A process in which a variable is set to its first value is
called initialization.

[1]

[2]

[3]

Declaration and initialization

var – special keyword for declaration of variables
In JavaScript

var variable; //declaration

variable = 10; //initialization

Or quickly

 var variable = 10;

[1]

[2]

[3]

Global and local

JavaScript has two types of variables:

▪ global - exist in memory and is available at all times
of the program. In JS it's a variables of page.

▪ local - exist in memory and is available only in block
when variable is defined. In JS it's defined in function
variables.

[1]

[2]

Data types

JavaScript has 6 base data types:

• Number – scalar type for integer and real digits
• Boolean – scalar type for logical values
• String – special type for work with text information
• Undefined – special type for uninitialized variables
• Null – special type for "cleaning" of variables
• Object – complex type for service and user needs

Number, Boolean and String

var n = 10; or var n = Number(10);

//number values for example: -1, 10, 3.14, Nan, Infinity

var s = “text”; or var s = String(“text”);
//string values for example: “”, “text”, ‘text’

var b = true; or var b = Boolean(true);
//bollean values: true and false

[1]

[2]

[3]

Null and Undefined

var n = null;
//null variables can have only null value

var u;
// created and uninitialized

And Object type… but it will be reviewed in future :)

[1]

Type casting

var a, b, c;

a = 10;

b = true;

c = a + b;

var a, b, c;

a = 10;

b = true;

c = a + Number(b);

There are two types of casting:

Implicit

Explicit

But both ways given c =11 as a result!

[2]

[1]

[3]

Type casting

Rules of typing casting:

▪ All scalar types try to convert itself to largest scalar
type: Boolean to Number, Number to String.

▪ If Boolean converted to String it at first converted to
Number and after them Number to String.

▪ In mathematical operations (excluding +) String
should be converted to Number.

▪ Null and Undefined converted to String as “null” and
“undefined”, and to Number as a 0 and NaN

[1]

[2]

[3]

[4]

Functions

In mathematics:

In classical programming

[3]

Function is a relation between a set of inputs and a set of
permissible outputs. [1]

[2]y = f(x)

Function is a named part of a code that performs a
distinct service.

Example

var i, base, power, result;

base = 2; power = 2; result = 1;

for(i = 0; i < power; i++) {

 result *= base;

}

console.log(result);

base = 3; power = 4; result = 1;

for(i = 0; i < power; i++) {

 result *= base;

}

console.log(result);

[1]

[2]

[3]

[4]

[5]

Function Declaration

function name (a, b) {

 return a + b;
}

[1]

* you can return one value only

* return always interrupts the execution.
* place your return at the end of a function

[2]

[3]

[3]

Function call

Call - operation for execution of function.

() – operator for this action.

Usually function can be called by name.

[1]

[2]

[3]

Example

var out;

out = pow(2, 2);
console.log(out);

out = pow(3, 4);

console.log(out);

function pow (base, power) {

 var result = 1;

 for(var i = 0; i < power; i++) {

 result *= base;

 }

 return result;

}

Code processing

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

Code processing

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

1.

Code processing

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

1.

2.

3.

Code processing

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

1.

2.

3.

4.

5.

6.

Code processing

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

1.

2.

3.

4.

5.

6.

5.1

5.2

Function Declaration and Expression

function name () {
 body;
}

[1]

var name = function () {
 body;
};

[2]

Additional Facts About Functions

Functions in JavaScript are Objects.

As a result, functions are accessible by
reference.

Functions can be used as a parameter in other
function.

References to functions can be saved in any
other variable.

[1]

[2]

[3]

[4]

Program flow

Operators in a program processed in linear order: from
top to bottom and from left to right.

Such sequence is called Program flow.

There are several methods intended to change
standard flow. You already know about function. Also
JavaScript has conditions, loops and switch statement.

[1]

[2]

Conditions: if-else

Very often we have to choose Most of algorithms have situation
when next step related of some conditions depended on
previous steps. It's a reason to use if-else statement.

if (condition) {
 true branch;
} else {
 false branch;
}

if (condition) {
 true branch;
}

[1]

[2] [3]

Conditions: if-else

Example:

function discount (type) {
 if (type === “silver”) {
 price *= 0.9;
 }
 if (type === “gold”) {
 price *= 0.85;
 }
 return price;
}

Function get a parameter
with a information about
discount. And if discount is
"silver" or "gold“, function
modifies global variable
price.

In this example a
shortened form of
operator was used.

Conditions: ?:

Sometimes if-else too bulky. If we need to initialize a
variable modifying it by simple conditions; or we need
to return a value from function and this value is
dependent on something, we can use ternary

Ternary operator like ?:.

result = (condition)? true action: false action;

Let’s rewrite the last example using ternary operator.

[1]

Conditions: ?:

function discount (type) {
 if (type === “silver”) {
 price *= 0.9;
 }
 if (type === “gold”) {
 price *= 0.85;
 }
 return price;
}

function discount (type) {
 price *= (type === “silver”)? 0.9: 1;
 price *= (type === “gold”)? 0.85: 1;

 return price;
}

We get a more compact
but a less readable code.
So be careful!

Loops: for

Loops are used when algorithm requires repeating of
statements.

First of them: for - loop with counter

for (start position; repeat condition; step) {
 body of loop; // will be repeated
}

One processing of loop’s body is called iteration.

[1]

[2]

[3]

Loops: while and do-while

Two others types of loops: while and do-while

while (condition) {
 body of loop;
}

do {
 body of loop;
} while (condition);

The main difference between these loops is the moment of
condition calculation. While calculates condition, and if the
result is true, while does iteration. Do-while initially does
iteration and after that calculates a condition.

[1]

[2]

Loops: examples

Example 1: for (var i = 0; i < 5; i++) {
 console.log(“Iteration # %d”, i + 1);
}

Text with number
of current iteration
will be print 5
times

Example 2:

while (accumulation < 100) {
 accumulation += doSomething();
}

This loop will be
repeated until
accumulation
reaches 100 or
gets grater value.

[1]

[2]

Loops: break and continue

There are two keywords for loops control :

• break – aborts loop and moves control to next
statement after the loop;

• continue – aborts current iteration and immediately
starts next iteration.

Try not to use this keywords. A good loop have one
entering point, one condition and one exit.

Switch

Switch statement allows to select one of many blocks of code
to be executed. If all options don’t fit, default statements will
be processed

switch (statement) {
 case value1: some body;
 break;
 case value2: some body;
 break;
 . . .
 default: some body;
}

Switch

Example:

This switch looks
for the word
equivalent for a
mark in the
5-point system

Default statement
is not used.

switch (mark) {
 case 5: result = “excellent”;
 break;
 case 4: result = “good”;
 break;
 case 3: result = “satisfactorily”;
 break;
 case 2: result = “bad”;
 break;
}

Practice Task

Thank You!

Copyright © 2010 SoftServe, Inc.

Contacts

Europe Headquarters
52 V. Velykoho Str.
Lviv 79053, Ukraine

Tel: +380-32-240-9090
Fax: +380-32-240-9080

E-mail: info@softserveinc.com
Website: www.softserveinc.com

US Headquarters
12800 University Drive, Suite 250
Fort Myers, FL 33907, USA

Tel: 239-690-3111
Fax: 239-690-3116

